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ABSTRACT

This study is concerned with information theory and its
relevance to the study of complex systems. When information about
every detail of their activity is kept, many systems are too complex
to be manageable and can only be dealt with by sacrificing detail.

It is shown here that multivariable information theory is capable

of eliminating much detail while preserving information about the
interrelations between parts of a system, even when those interrelations
are very complex. A procedure is described and exemplified, for
example, which is helpful in the decomposition of hierarchical systems.

It is shown, among other results, that when two variables
are related (in the set theoretic sense) the transmission between
them is maximized when their behaviors are isomorphic. This obser-
vation leads to an algorithm for the computation of channel capacity
for arbitrary finite-state systems of a very general type.

The importance of information in regulatory processes is
discussed and quantified, and several basic regulatory schemes are
discussed in terms of the information involved, showing in an exact
way how information transfer and channel capacity limit the ability

of any system to act as a successful regulator.
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Z. INTRODUCTION

Norbert Wiener defined Cybernetics as the science of control
and communication, in the animsl and machinel. By that definition,
this paper could be called a cybernetic study, for it is concerned with
communication within and betweern systems, and alsc with the role of
communication in control.

When science attempts to gain insight intc real-world systems,
it invariably begins by dismissing, explicitly or implicitly, many of
the variables which might be consi&ered but which are thought to be
irrelevant or inconsequential. A scientist ctudying maze~learning in
rats might consider the phase of the moon, the length of the rat's
tail, the color of the experimenter’s tie, and so on as variables, but
in fact he would be silly to do so unless he had reason to think them
relevant. Science deals not with real-world "systems" but only with
models, i.e., abstracted versions, of them.

Until recently, the systems which were studied were sufficiently
simple that after all of the irrelevant variables were discarded, the
number remaining was small enough to give a manageable model. When
genuinely complex systems are tackled, however, the old procedure
doesn't work; either one is fbrcgd to discard reievant variables to
get a model of manageable complexity, which is then of poor quality,
or else one ends up with a model which is of good quality but itself
unmanageably complex.

The information theory of complex systems, which is the

subject of this paper, can in a sense be viewed as a way of dealing
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with the latter type of model, by discarding details and only keeping
information about its functional structure--which variables affect
which and to what degree, which variables are statistically "close" to
which others, and so on. Chapters II, III, and IV are concerned with
this "communication structure" of systems.

The information theory used here is not the highly specialized
theory developed for use in sophisticated communications systems, but

rather is an outgrowth of the suggestion by McGillz, Ga.rner3

Ashby',+ that the theory formulated by Shannon5

, and
could be extended to n
variables and could be usefully applied to the study of relations in
systems of many variables.

Information theory is important for the study of complex
systems in another closely related respect. Most complex systems
found in nature, and meny of man's complex constructs, survive by
acting appropriately on the basis of information they receive; they
regulate their actions on the basis of information. That virtually
all organisms which have survived the process of natural selection
have information sensors bears witness to the importance of information
to survival. Indeed, the almost incredible sensitivity and delicacy
of the sensory apparati developed in the course of evolution lead one
to suspect that primacy in the "struggle for survival" goes to those
who can best obtain and use information; we humans have at least five
distinct systems for taking in information from the environment, and
additional systems for sensing our internal conditions.

The channel capacity of a system is a bound on the ability

of the system to accept, transform, and act on incoming information,



and as such it is a quantity important for the swrvival of the system.
In chapter III is introduced an algocrithm for the calculation of channel
capacity for a very general type of system; in chapter IV information
transfer in systems is discussed in more gereral terms.

Chapter V, on Regulatior, was inspired by but goes consider-
ably beyond Ashby's Law of Requisite Variety'6° In that chapter we
discuss the relationship between regulation and information transfer

and show that the two are closely linked.



II. NOTATIONS AND CONVENTIONS

Introduction

Section 2.1 will set the basic notations to be used hereafter.
It does not contsin any new material. Section 2.2 will provide
conversion techniques between discrete-variable and continuous-variable
distributions, allowing us to deal thereafter with discrete distributions
only. Section 2.3 will justify our exclusive use of the discrete time

variable.

2.1 Basic notations

Matrices will be denoted by underlined Latin capitals, e.g., A,

Constants will be denoted by lower case Latin letters, usually
early in the alphabet, e.g., &, h, m,e

Sets will be denoted by Latin capitals or by braces enclosing the
elements, e.g., B = {.bl’ b2, b3} .

Variables will be denoted by upper case Latin capitals usually

toward the end of the alphabet, e.g., X, Y. Compound variables whose

components are shown explicitly will be denoted with < and > signs,

€.8., <Xl, X2> or even <X, <Yl, Y2> , 2>, IfS is an ordered set

of variables {Xl, X2, coay XM} , <8> 1is the compound variable

<Xl’ X2, .00’ xM >D



Values taken by a variable will be denoted by lower case versioms
of the letter representing the variable, possibly with subscripts. The
set of values a variable can take will be denoted by the Latin capital
representing the variable. For example, the set X = {xl, X5 x3} is
the set of values taken by variable X. Using the same symbol for the
variable and its set of values is often convenient, and the context will
always make clear in which sense the symbol is being used.

Values of a variable, being merely the elements of a set associated
with a variable, need not be numbers, and no metriec is implied. If the
set is finite, the elements may be ordered and numbered arbitrarily for
convenience, and it is frequently useful to deal with such numbers as
equivalent to the values, e.g., to equate "X takes its third value"
with "X = 3",

Functions will be denoted by lower case Greek letters, or by f or
€. The domain and range sets are a fundamental part of a funetion's

definition; they are displayed as, for instance, f

I Y - A, which is

read "Function f, maps Y into A",
A system S is an ordered set of variables, and the variables are

members of S. By system S we will also mean the product set whose

components are the value-sets for the variables in S. If there is a
relation (in the set theoretic sense) over the members of §, the subset
of the product set implied by that relation will be called the system
relation; some authors use the term system to refer to what is here
called the system relation. If the variables in S are associated with
machines, "the system" can also refer to the collection of machines, if
no confusion results. The term system may thus be used in three distinct

ways; this should cause no confusion in practice.



A system-value is an ordered N-tuple with one component for each

variable in S; e.g., S = {Xl, X,, X3} has the value <2, 4, 5> when

X1=2, X2=l+, a.ndX3=5.
A Machine-with Input (MWI) is a sequential machine described by

a function of the form £ : S° x I° = s¥1, that is, ¥ = £(s?, %),

where sT is the "state" at time ~ and i' the "input". This is usually
written £ : S x I -> S with the understanding that f maps the "present”
state and input into the "next" state. A MWI is diagrammatically
represented as shown in Figure 1. Both I and S may be product sets.

A Mapper is a machine described by a function of the form
g : 1t > Ot, that is, ot = g(it), in which o is the "output" at time
and i* the "input". This is usually written g : I ->» O with the under-
standing that g maps the "present” input into the "present" output.

A mapper is represented as shown in Figure 2.

A Moore automaton is a machine consisting of a MWI £ : Sx 1 —> S

plus & mapper g : S => O, as shown in Figure 3.

A frequency table associated with a system S = {Xl’ KXoy eeoy XM}
is an M-dimensional matrix whose entries are all nonnegative real numbers.
It is denoted g(xl, X5 ooy XM), N(8), or just N if the argument is

understood. The typical element in N is ny g
l’

2, ceooy

ith
x>V
N
particular subscripts indicating particular system-values. Each element
gives the real number (ordinarily, an integer) associated with the
frequency of the system-value to which it corresponds; e.g., if
S = {Xl, Yl, YQ} , the entry n2, b, 5 = 3 indicates three occurrences
of the triple <X;, ¥, ¥, > = <2, 4, 5>, The sum of all entries in

a table N(S) is denoted by N(S) or just N.
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Figure 1.

% Figure 2,

Figure 3,



Thus N gives the frequencies of occurrence of all the system-
values; the entries of N are presumably obtained from some data-gathering
process, perhaps by observation of a physical system over a long period.
It is not our purpose here to discuss how frequency tables may be obtained,
but only to deal with tables already provided.

If a system relation holds over the members of S, some of the
entries of N will necessarily be zero, and conversely. (1t N is one-
dimensional, the relation becomes a property in set theoretic language. )
Somewhat more generally, N can be interpreted, after suitable normali-
zation, as the characteristic function, and therefore the descriptor,
of an M- ary fuzzy relation7 on S.

A frequency table associated with S = {Xl, X2, cens XM} can
also be associated with other systems, derived from S by grouping the
variables in various ways. PFor example if S = {Xl’ X2, XB} and
Y=« X2 R X3 >, the frequency table can be associated with the system
s' = {Xl, Y} . This just amounts to noting the obvious fact that an
n-tuple of variables can be considered as a single variable with a
new name.

An important operation on ;‘{(X:L s Xps veoy XM) is that of collapsing

the frequency table over one or more of its dimensions (variables).

Collapsing over Xi gives a new table E(Xl, X2, csoy Xi—l’ Xi+l’ cooy XM)

whose entries are obtained by summing over the X; dimension:

=) ™ s X
R AN SRV TR TS Z 1 Koo e Xy
X4

For example, collapsing N(X, Y) over X gives N(Y):



0] 2 L Y
X 1 3 1 1 5 5
N(X,Y) N(Y)

For a one-dimensional frequency table N(X), the entropy of X,

denoted H(X), is defined to be zero if N = O and is defined as follows
if N > O:

H(X)

i

]
NA
2, o

P—J

(o]

A

=), 5

%}- [N log,N - > ny log,ny ] .

The summation runs over all the cells in the frequency table.

Henceforth, in accordance with information theory standards, we
will assume logarithms are always to base 2, so that the unit for
entropy, etc. is the bit.

With an M-dimensional frequency table E(Xl, X XM) for a

PYIREEY
system S = {Xl, X2, coos XM}’ the entropy of system S, denoted

H(Xl, Xys ones XM), H(S), or H(N), is zero if N = O and otherwise is
defined by
%, ,X . ¢ “x X5,
H(X) 5Xp5e e e 5%y 22 2 1> 2’ M 10g 212 XM

the summation running over all cells in N{S).
The expression nX_/N may be interpreted as a probability, if this
i

interpretation is useful, but to avoid unnecessary connotations we will
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generally avoid doing so. The term "probability" carries a connotation
of permanence and reference to future events, while the frequency table
connotes a reference to events of the past - although the table in the
abstract is of course just an array of numbers, with no time reference.
If the assumptions under which a system is being studied allow
the probability density function to be meaningfully defined, then the

probability density function for a system S = { Xl, X2, cens XM—§ is

denoted p(X;, X5, ) X)) or p(S) and is defined in the ordinary way.

In this case, H(X) and H(S) are defined as follows:

- S p(X) log p(X) ax

- 00

H(X)

ob o0

0
H(S) = - S S S DX, Xy 50 - 0Ky,) 108 DX Xy 500 5%,)
-0

- 00 ~o0

«dX dX ...dX
1 2 M
The operation of collapsing a frequency table over a variable Xi

corresponds, with probability densities, to integration over X;:
g

D(Xy 5 Xpy eoes X575 Xj4ps -ooXy) = j p(X1s X5, oons Xy) d%5
- 00
The relation between discrete and continuous distributions will

be considered in more detail in section 2.2.

For gKX,Y), the entropy of X conditional on Y is denoted by

HY(X) and defined by
Hy(X) = H(X, Y) - H(Y)
To obtain H(Y) from N(X,Y) requires collapsing N over the X-dimension,

thus obtaining N(Y); H(Y) is then obtained from N(Y).

The obvious generalization of H (X) is H X X 400e0,X )3
wous 8 y (%) Yl,Ya,...,Yn( 1Ko ey
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if Sl = {)%}Xé,ooo,xm} and 82 = {‘Yl,staoo,Yn} , this can be denoted
HS (Sl), the entropy of S, conditional on Sp, and defined by
2

HSQ(SI) = H(SlU 82) - H(se)o

Normally, HS (Sl) is of interest only if Sl and 32 are disjoint. The
2
set sl\!32 is an ordered set, just as Sq and S, are ordered sets.

For a two-dimensional table E(XSY)9 the transmissicn between

X and Y, denoted T(X : Y), is defined by

T(X : Y) = H(X) + H(Y) - H(X, Y).
The expression on the right is equal to H(X) - HY(X) and to H(Y) - HX(Y),
but we take the definition above as primary.

T(X : Y) can be generalized in the obvious way to T(Sl : 32),

but it can be generalized in a more fundamental way by introducing more

single variables. The total transmission over the system S =={X1,X2,°,°,XM} R
denoted T(Xl D SO TN XM), T(S), or T(N) where N is the frequency

table for S, is zero if S contains only one variable and otherwise is

defined by

T(Xl D SR xM) =H(Xl) + H(X2) + .. * H(XM)

- (X, X5, 200, Xy)o
T(S) is a measure of the total constraint holding between all the vari-
ables in S - a measure of the degree to which the variables are statis-
tically interdependent. If T(S) = O, the system relation is of a
degenerate type, being merely the conjunction of one-dimensional
properties on the several variables. (These statements will be Justified

later.)
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The transmission over a system Sl = {_Xl’ X2, caosy X&} conditional

on 82 = {:!l, Y2, coe 15 } is denoted by TYl’ Y2’ ceey Yn(Xl : X2 LS Xm)

or T, (S,) and is defined by
5,°°1

T, (s.)=H, (X,) +H, (X,) + ... +H, (X ) - H, (8,).

The transmission between Sl = {Xl, X2, ooy Xm} and 82 ={Yl, Y2, cooy Yn}

is denoted by T(Sl : 32) and is defined by

(s, : 85) = T(<Xyy Xpy wvey Xy >t <Yy, ¥y, wney Y >).
All these entropies, conditional entropies, transmissions, and conditional
transmissions are non-negative quantities measured in bits, and they
all have familiar interpretations discussed in the literature.

A less familiar entity is the interaction. Given a three-

dimensional frequency table E(X, Y, 2), the interaction between X, Y, and

Z is denoted by Q(X, Y, Z2) and is defined by

X, ¥, z) = TZ(X : Y) - T(X : Y)

It is easy to show, by collecting terms, that

X, Y, 2) = TX(Y : Z2) - T(Y : Z)
= TY(X : 2) - (X Z)

so the definition is actually symmetrical in the variables. Qx, Y, 2)
is a measure of how much the transmission between two of the variables
is conditional on the third; Q may be either positive, negative, or
Zero.

The interaction between X, ¥, and Z conditional on W, denoted

Qu(X, Y, 2), is defined like Q(X, Y, Z) but with every H subscripted

with a W.
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Q{X, Y, Z) may be generalized in an obvious way to Q(Sl9 S,5 SB>’

or more fundamentally by introducing more variables in the argument. The

n-variable interaction over the gystem S = {nxl, Xo5 ooy Xn}” denoted

Q(Xy5 Xp, oo.y Xp) or Q(S), is defined iteratively as follows:

Q(Xl, Xys coes X 1 xn) = an(xlp Zoy ooos xnml)

- QX Xy ceey X

1% 72°? n-l)

4

Interactions have been interpreted and discussed in papers ty Ashby

and McGill?.

2.2, Approximate conversions of discrete to continuous distributions

and vice versa

It is frequently convenient to replace a continuous distribution
p(X) on a continuous variable X by a discrete distribution P(Y}
(= % N (Y)) on a discrete variable Y, or to do the reverse. This is
because some operations are easier in the discrete dcmain, some easier
in the continuous domain. The precblem we attack in this section is, what
is the relationship between the entropy of the original distribution
and the entropy of the [:approximately:l transformed distribution? Ia
effect we are looking for a bridge across the gap between continuous -
and discrete - variable information theories, a bridge allowing transfor-
mations in either direction. We shall show that if the transformation
is done with care, the entropies of the original distribution and of its

transform differ only by a constant and that transmissions and interactions

are unaffected by the transformation.
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2.2.1. Transforming a continuous distribution to a discrete distribution

Let Sc = {_Xl, X2, ceos XMT} be a set of continuous variables for
which the probability distribution is p(Xl, Xps eees Xy) = p(Sc), and
suppose that for each X; in S, p(Xi) is finite within an interval I,
of finite length Li and is zero (or may be so approximated) outside Ii“
Thus,

[ p(xyax; =1
I3

(Ii need not be a connected interval.) Let Ii be divided into Ni

subintervals I.., L. 5 «oes I.. , each of length Li/Ni.

iNy

9 seey IMJ , & total

Within the space whose edges are 1 s Lo
L) 8, M

probability of

P(jl, Jps wees jM) =f f f p(Sc)XmdXZ...d.XM

1 Y2 M

is enclosed; the average value of the probability density within that

space is
._,(S ) P(j]:: 32, cocy JM) P(jl’ 32’ o9y jM)
p ¢ = = T
5 5‘ oooj‘ dxldxaoeod.‘xM Vo
Il 12 I
i, 23, My,
Lo Loeoo
where V, = Nl N? ;M o
l 2000 M

If in each such space p(S.) is replaced by S(Sc), the resulting distri-
bution is an approximation to the original, and its quality depends on

the numbers N, 1 =i =M. The entropy of the approximation,



i5

a=N

Happx 'SQ = - S g g p{S,) log P(Sa)dxldxa,,,dXM

will of course egual, in the limit as all Nl g0 to infinity, the entropy

of the original distribution,

H(Sc) = -S 3 S p(Sc) log p(Sc) X, aX,, . . .aX,,..

Il I2 IM
That is,
1im
rN —>oo— (S)“H(S).
1 appx
N2 > o0
N, —> o0
| M A

Now the numbers P(Jl, 32, 0oy jM) constitute a discrete distribution

over a set Sd = {'Yl, Y2, evey %M} of discrete variables, with Yi

corresponding to Xi:
P(Yl = jl’ Yz = 32’ ¢eoy YM = JM) = P(Jls cj2’ ey jM)"

The entropy of this discrete distribution is

Ny N Ny
H(S, ) = 2 Z WE B3y 5dns0e0sdy) 108 F(Jysdnseeesdy).
d =1 j =1 S A= M 1292 M
37 d, u

Theorem II.1

The relation between H(S ) and Happxtsc) is given by

Ni Né coo NM

= I'4 .
H(Sd) Happx‘\sc) + log Ll L2 ceo IM




Proof:
Since E(Sc) is uniform within each of the volume segments, the

integration necessary for finding Happx(sc) reduces to a summation:

16

N N N
1 2 M P(jl’32:°‘°:jM) P(jlajzﬁ‘”’jM)
H (8)==2 2 ... log
appx' ¢ K K Vv Vv
Jlsl 3281 jMal o o (o]
T - Z Z soe z P(Jl’ 32’ e jM) 108 P(jl’ 32, @coy jm)
* 3 T e T Bliys a5 eees d)- 1o Vg
= H(S4) + log V-
Q. E. D.
- N1N2°°'NM
Therefore, H(S3) = H(S,) + log fifg__—iﬁ , with the quality of the
approximation depending on the numbers Ni, Né, cosy NMo Clearly this

situation holds even when the approximation to p(S,) varies, within

&%

8
As an example, suppose p(X) =2-e for X = 03 for this

2w

See Figure L.

reason, from the rigidly defined E(Sc).

distribution H(X) = 2.04 bits.

as zero outside the interval [O, h) = I and the interval is divided

into N = 10 equal parts, we obtain the following probabilities for the

subintervals:
subinterval probability
[o, 0.4 ) .1585
(0.4, 0.8) .1523
(0.8, 1.2) 1407
(1.2, 1.6) .1248
1.6, 2 ) .1064
[2, 2.4 ) .0872
(2.4, 2.8) .0686
[2.8, 3.2) .0519
(3.2, 3.6) .0377
[3-6, 4 ) 02614

If p(X) is approximated



p (X)

0.2}

o.1 |

Figure &4,
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Calculating H(Sd) with these numbers, and ignoring the fact that they
do not total 1.0000, we obtain

H(Sd) = 3.14 bits
and therefore H(S,) = H(X) = 3.1k - log lﬁ-) =1.82 bits.

If the probabilities for the subintervals are not calculated
exactly but are only approximated, for instance by multiplying p(X)
at one end of the subinterval by L/N = 0.4, other estimates for H(X)
are obtained.

{"Probability" for [x, x+o.h)= 0.4 p(X)} = H(X) = 1.85 bits.

&"Probability" for [X, X+0.4) = 0.} p(x+o.h)} = H(X) = 1.78 bits.
All of these values agree reasonably with the true value of 2.04 bits,

considering all the approximations made for the calculation.

2,2.2. Transforming a discrete distribution into a continuous distribution

Given a discrete distribution P(S4) on set Sy = iyl, Yoy oe- YM} ,
a continuous distribution can be formed by the reverse of the process
described above; to do so is of little use, however, unless the continuous
distribution thus obtained is subsequently approximated by another
continuous distribution which is easier to deal with -- for which

integrations are easier, for instance.

2.2.3. The effect of continuous-discrete transformation on transmissiopns

and interactions

The entropy of & continuous distribution and its discrete
counterpart differ by a constant (neglecting approximation errors.)
Transmissions between continuous variables, and transmissions between

their discrete counterparts, are equal; T is unaffected, that is to say,
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by the transformation. For suppose we have a set of continuous variables,
Se, with a distribution p(Sc), and a corresponding set of discrete

variables Sy with the transformed distribution P(84):
T(Se) = T(Xy 2 Xy 3 oo0s X)) = H(X,) + H{X,) + ... + H(X)

- H{X

15 X5 oeos XM)a

T(8q) = T(Yy: Yps ooor Yy) = H(Yy) + H(Yp) + ... + H(¥y)

it H(Yl, ng sooyg YM)O
From the theorem,

H(Y;) = H(Xp) + log(

(114

“ramz aE

H(YZ) H(xz) + log (

s0e0

B(Y)) = H(X,) + log (—)

5?

NN, °°°NM
~ 172
H(Y]., Yz, LY YM) = H(Xl, XZ, oo g Xn) + 1_0 (w)

A A

Therefore

N
T(8q) = [H(Xl) + log(i%)] + ..+ [ H(XM) + lcg @ﬁm)]

NN ...N
i{ . 12 M
- + 1 - )
[mxls Xps oee X) ...og(L = )}

~

Q. E. D.
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Interactions, which are defined by differences between trans-

missions, are therefore also unaffected by the transformation.

2.2.4. General comments on the transformations

Because transformations between discrete and continuous variables
and distributions are possible, we do not need to make separate statements
for each type but may confine ourselves for the most part to discrete
variables, which are generally easier to handle and which fit more readily
into the framework of machines-with-input and mappers. When it seems
appropriate, we may make explicit statements about the continuous case,
but usually that case will be carried along implicitly.

There is usually a certain amount of error involved in approxi-
mating a continuous distribution p(S,) by another, E(Sc), which is
uniform within each small volume--the more finely the sample space is
cut, the smaller will be the error, in general. This error corresponds
to "quantization noise," which has been studied elsewhere, and how much
error of this type to allow is a pragmatic question which can only be
decided from case to case.

Some types of distributions do not allow transformation and in
fact are outside the class of distributions information theory can
handle, for instance (withn/¢ being the unit step function):

p(X) = 0.5 & (X-0.5) + o,,5/u(x) ~o,5/4(xn1)o
See Figure 5.

It is meaningless to talk of H(X) for any distribution which mixes

delta "functions" with finite functions.



p (X)

0.5

0.5

Figure 5.

Y
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2.3. Discrete-time convention

Just as it is generally easier to deal with discrete distribu-
tions, so is it generally easier to deal with time as a discrete
rather than a continuous variable. For one thing, machines-with-
input are defined on the basis of discrete time, as are automata,
and it is with these that we will deal later. For another, the
systems with which one deals in engineering are almost exclusively
those for which the approximation of finite bandwidth is appropriate,
and to which the Sampling}Theorem may therefore be applied to put
time on a discrete basis; the errors involved can be made as small
as desired by reducing the size of the unit time interval or quantum.

Another reason for treating time as a discrete variable is
that we shall frequently be concerned with the values a variable
takes over a time span; the value it takes at time ~ is in effect
a variable; were we to consider all the values over the time span,
we should have to deal with an uncountable number of variables and
an unmanageable situation. By quantizing the time variable, this
problem is avoided.

Finally, much machinery developed for Markov processes is
based on the assumption of a discrete time variable, and to take
advantage of that machinery we must employ discrete time. So
henceforth, unless explicit mention is made to the contrary, we will

assume time to be a discrete variable.
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IIZ. GCSOME RESULTS IN INFORMATICN THEORY

Introduction

In this chapter we will discuss several results ir. informaticn
theory, whose applications are not limited to the study of complex
systems. Since the focus of this paper is cr complex systems, the
results will be discussed with a bias in that direction, but the
results themselves are basically mathematical and applicable to other
situations. All of the results, however, are useful in the study of
complex systems and find applications, explicitly or impiieitly, in

the succeeding chapters.

3.1. Operations on the frequency table which leave H, T, and Q unchanged

Given E(S), a frequency table for the set of variables S,
certain common operations on N leave all H's, T's, and Q's unchanged.
These are:

1. Permuting the order of the axes (for two variabies,

transposing N; for more variables, permuting the order of

the variables in S = {xl, Xy oo, XM} , which is an

2
ordered set.)
2. Changing the order in which the values for a varisble are

listed along the axes (for two variables, permuting rows

and/or columns.)




3. Multiplication of all the entries in N by the same positive

constant.

Another operation leaves T's and Q's unchanged but reduces some H's; if

there is a variable Xl in S with two values xl and xi such that

= K.n (x 0)
nxl,xg,...,xM SR e S

for all values of X2, coey XM (for two variables, if two rows or
columns are proportional), then yimgy be partially collapsed by
summing over those two values, i.e., by setting

n' =n +n
xl’X2’°“"XM xl’xz”°"XM xi,xz,...,XM

n' 0.

X! KpseonsXy
This last statement is a consequence of the Collapsing Theorem
which is proved and discussed in section 3.2 .
We shall use these operations freely in what is to follow,
usually without an explicit reminder of their information-preserving
property. The fact that variables can be relabeled freely is particu-

larly important in several proofs.

3.2, Collapsing theorems and their consequences

Introduction

The operation of collapsing a frequency table N over one of its

dimensions, say over the XM dimension, reduces the H and the T of the .

table. If S = ixl,XQ,“.,xM} and S' = ixl,xg,...,xM_lk are the

24



original gystem and the system after collapsing, then
H{(S'} = H(8) - HS“{‘LM)
T(S’) = T(S> = T(<X19X290005XM“1' > XM)
= T(Sz} - T(S':’ . X-M)'

(Ashby8 ), showing that H and T both decliine by a nonnmegative amount.
For interactions,

- a(e) = Q) - 9 ()

The sign difference between the interaction equation and the others
is a comsequence of the definition of Q.
The collapse of N cver XM corresponds to, or implies, complete

disregard of the value of XM; N', the result, is the tablie for a system

in which XM is not considered a variable. As such, ccllapsing is a
valuable operaticn; but what if cne wishes to keep XM as a variable
while losing the distinction between scme of its values? For example,
if XM takes values 1, 2, 3, 4, and 5, one might be interested omnly in

whether the value of X, is greater than 2, or not. A new variable

Xﬁ with two values could be introduced, related o X by s

23hs

=
[

] - 2
XM{MLIWZE

and a new system S' ={¥l, X2, vooy XMwl’ Xﬁ%defined; thiz sectiecn
answers the question of how H(S) and H{S')}, T{S} and T{S'), and Q{5

v

and Q{S') would be related in that case.
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From another point of view, this section is important for the
situation in which a system (or its frequency table) can be observed
only through a mapping which loses information about the variable-
values, as would be the case, for example, if an observer were watching
the state-changes in a Mooré automaton via its many-to-one output
function. The Collapsing Theorems give a means of evaluating how much
the H's, T's, and Q's would decline (or possibly rise, in the case of

interaction) due to the mapping.

3.2.1. Collapsing lemmas

We consider a system S = §_x, Y-g and its frequency table

N(X, Y) or just N:

Y
X 1. Y2 e m-1 Ym
% 1 P e P Pigm
X2 n21 n22 S
X . . .
Xy D1 v Bem-l Pam

We will partially collapse N over Y by combining the last two columns,
representative of combining any two rows or any two columns (see
section 3.1). To this end we define a new variable Z, related to Y
by the mapping /L: Y > Z:

L v ¥ Ym-1 Y,
/.A- z1 Z2 oo e

Zm-1 Zp-1



no
=~

The freguency table for §° = {’XB Z‘E is N'iX, 2} or just N':

Z
N
Zl 22 00 0 zm‘-“l
1] P, B2 cee Dy pa
ol P21 P22
X : :
N and N' are related by
n, if § € m-1
i, <
n}! -—
i,3
n +

1,m-1 ni,m if j = m-1,
We denote the sum of the entries in the jth column of N by Nj, and of
course the sum of the Nj's by N. The entropy of the jth coiumn of N

will be denoted Hyj(X).

The last two columns cf N constitute a frequency table
N* = N*(X*,Y*):

Y*
Lol Ym-1 m
1| ",m-1 Pim
X2
X* : : :
*o | Pa,m-1 Bgom

with column entropy H(X*) and row ertropy H{t*),
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The transmission in N¥ is T(Eﬁ), and the sum of its entries is
N*. The Collapsing Lemma for Transmissions in this simplest case is:
Lemma III.1
(s) - T(s') = & T(W)
In words, the transmission lost through partial collapsing is
the transmission contained in the frequency subtable which is collapsed,

times the relative weight of the subtable.

Proof':
T(S) = H(X) - Hy(X)
- s 0N
= H(X) - jzgl & HyJ(X)
m-2
= H(X) - jz= %1 Hyj(x) - —N-;‘Iﬂny LX) - By (X)

m-2 .
(s')= HX) - 3 Hallazt_j(x)-5"1'—*1*—"2H X)

T(s) - 1(s') = -N—“{-I-I:-NE H, () - el (X) - Nﬁ Hy, (X)

Ny1* - Ty
= "'_1\1’}"'12‘L [Hzm«-l(x) ) -Nﬁ:t%ﬁmﬂy 'l(X) ) NN]:; 1% m(X;_\

- T {n(x*) S R nym<x)]

- T [ro) - ]

= W T(X*: ¥)

Q. E. D.



The Collapsing Lemms for Entropy is
Lemma III.2

N* .
H(S) - H(S') - - By (¥%)

The entropy lost through partial rollapsing over Y is the
entropy of Y conditional on X in th: subtable being ccilapsed, multiplied

by the relative weight of the subtable.

P m ng e .
Proof: HR) = - 7 7 Ll log Ead
i=1 j=1 ¥ N
X m-2 5 A
= o Z 1,4 log nisJ - Z [ni3¥n°1 log i,med
i=1 j=1 ¥ N i=1 L N
n n,
+ 1M log Y.
N N
L om-2 ar. X 0!
H(S!') = - ] _.;-fdn log «id . J il jog flmel
i=1 =1 N 4 N N

n: s D n.
- iymel o i,mo-1 _ Mi,m 1o 1i,m
T T

= %’.‘; L«—JH(X*) + H(x*, Y‘*'>]

P -
= N g (ys
5 X*( J



30
Extending the system to three variables, S = {W, X, Y} and
partially collapsing over Y to get S' = {.W, X, Z-} , we obtain the
collapsing Lemma for Interactions. N¥ = &(W*, X%, Y*) is the three-
dimensional analog of N*(X*, Y*), and the collapsing is understood to be
over Y¥, i.e., over y,_ , and yp.

Lemma I11I.3

a(s) - a(s') = Q(m)
The interaction is lowered by the interaction in K¥, suitably
weighted.
Q(s) = q(w, X, Y) = TY(W : X) - T(W: X)
Q(s') =Q(W, X, 2) = TZ(W : X) - (W : X)

Q(s) - (s')

TY(W : X)-TZ(W : X)

Yo-1 g (w:x)+ﬁN9; Tym(W:X)

N Ym-1
N _*N
- Q=L m o (wW: X)
N Zm-1
N +N |N N

= m-1 m m-1 T (W . X)
N Np-1+Np Ym-1

- T (W : x)]
’m-1

' [TY*(W* : X*) - T(Wx : x*)]

= M Q(wx, x*, Y*)

(wW:X)

+0 T
Np-1tNy Im

Zi%

=% =

Q(I*)

Q. E. D.
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Since Q(Eﬁ) may ve either positive, negative, or zaro, eollapsing
dces not necessarily lower interaction as it does =ntropy and trans-
mission.
The lemma for entropy can be rswrittern, wsing the identity

H(X, Y} - HiX, Z)= H (Y] - H;X{z)o

in the form

B (Y) - B (Z) = - K, (7%)
which makes evident the structural similarity between it and the
other lemmas; the form of each is

Q original ) - F ( table after ) - W f(follapsed )

table, N eollapsing, NY N subtable, N*
with only the operator f differing betweern the lemmas.
As an example of partially ccllapsing a two dimensicnazl table,

we collapse Q(W, X) below over its first two rows, which constitute
Nx(w*, X*), and obtain N'(U, X},

Example:
Original table: N{W, X):

X
1 2 3 BiW, X) = 2,689 bits
1 1 2 1 T(W : X) = 0.367 bits
W 2 2 1 2 N = i2.
3 3 0 0
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Collapsed subtables N (W¥, X*):
X*

1 2 3 HX*(W*) = 0.918 bits

1 1 2 1 T(W* : X*) = 0.074 bits
W*
2 2 1 2 N* =9,

Table after collapsing: N'(U, X):

X
1 2 3 H(U, X) = 2.000 bits
1 3 3 3 T(U : X) = 0,311 bits
' 2 3 0 0 N' =12,

The entropies for the three tables are related by

H(W, X) - H(U, X) = g~ Hyx(W¥)

2.689 - 2,000 = %é ° 0,918 = 0.689

and the transmissions are related by

T(W: X)) -T(U: X) = %ﬁ T(W* : X*)

0.367 - 0.311 = %é * 0,074 = 0.056.

Collapsing N over its first two rows lowers the entropy by 0.689 bits
and the transmission by 0.056 bits.

The three lemmas hold also when the subtable is collapsed over
more than two Y-values. Suppose a table N(X, Y) is to be partially
collapsed over its last k columns -~ the columns for Y1 YMep2 *0 02
Yas - T &et N'(X, Z). This could be done by collapsing the last two
(1) 1)y,

columns (which we denote submatrix M'

ems .

and whose entries sum to M

thus obtaining a new matrix N(l)(X19 Yl); next collapsing the last two



1) .. : (2%, (2%
columns of N'°“ (i.e., submatrix M'“/)tc get LA Y2)§ ard so on,

finally getting N(k“l*{kal, Ykgl} or N'{¥, ). T{X : ¥} ard T(X. : Z)
would be related by

T{X : Y) - T(X : Z)

[t e vy - TX )]+ [rix,e9,) - 1{x,57, ]

oot [l ooy o) - TX s 2)]

(k-1)
M p(ue1)y

+ eoo T

Consider the first two terms in the summation. They can be combined

and rewritten as

(2) ) {19
M 2) M {1
—F (u2)) + w2y T 2

PSS

or, since M(l) is the sum of the entries in the last two columns of N,
and M(z) is the sum of the entries in the last three columns of N,

this quantity may be written as

N + N + N 4+ N . ,
mtk © Cmtkel | mtk-2 Npse * Npageoy y
¥ vel?)y « 22 IR et
Novie ¥ Vpagees ¥ Vg

The Collapsing Lemma for Transmissions sftatez that this gquantity iz

equal to
sum of the entries
in the last three
columns of N X Transmission in the
N submatrix comprising

the last three columns of N
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An argument by induction leads to the conclusion that

sum of the entries
in the last k columns Transmission in
X : Y1) -T(X: 2)= of N the submatrix
N comprising the
last k columns
of N

or, more briefly,

(X : Y) - T(X : Z) =§i T(N*)
where N* is the subtable collapsed, with an arbitrary number of
columns.

Arguments identical in form to this one easily show that the
Collapsing Lemmas for Entropy and Interaction also hold when the

subtables collapsed have an arbitrary number of columns.

3.2.2. Collapsing theorems

These lemmas can be further generalized to a system of many
variables, S = { Xl’ X2, cvos XM, Yf}, for which the frequency table
N = N(S) is to be partially collapsed over the variable Y, with the
table N(S') representing the resulting system S8' = {.X s Xpp ooy Xy 2}°
We denote by N* the two-dimensional frequency table, with
< Xl, X2, coay XM:>* the row-variable and Y* the column-variable,
which is to be collapsed by summing over Y¥,

Theorem II1.1 (Collapsing Theorem for Transmission, C.T.T.):

T(s) - 1(s') = - T(W)

=M riex o x R
N ( ls 23 uv03XM> cY)
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Proof:
T(S) = T(.lezxgz cooiXy) + T{ <X X2, coosXy >t Y)

coosk >t Z)

T(S') = T(X_:X : ...:X )} + 7(

172 2’

- 'Y = T/ : Yy - T( ) s Z
T(s) - T{(8') T{<X 5 woeyXy>: ¥ (<X s oo Xy >0 7 )
= N0 om{cx, Lo X >% r ¥®)

Q. E. D,
The last step follows directly from the Lemma for Transmissicns.

The C.T.T. says that if a table is partially collapsed over a
variable Y, the total transmissicn is lowered by the transmission
between ¥ and the rest of the variables, im the collapsed portion,
weighted apprcpriately.

From another point cf view, the C.T.T. says that viewing a
system through a many-to-ore mapping can never increase its apparent
constraint; if observer A views a system directly and cbserver B views
it via a mapping, the constraint between variables which is apparent
to A is always at least as large as the constraint between the variables®
images which is apparent to B.

Theorem III.2 {Collapsing Theorem for Eutropy, C.T.E.):

e

4 F<B B S N* 7 \
H\S> = H(S ¢ ~TH<X1y Xgﬁ coey XM>*EY*"

Proof:

(8') = H(X N :
H\ ) ( :1-5 ’ M Q’Xl, 000y XM>\
H(s) - H(s'} = ’

¥
st
T.%
[—c
j= o]
N
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The last step follows from the Lemma for Entropy.

The C.T.E. says that collapsing over part of Y lowers the
entropy by the entropy of Y conditional on all the other varia‘r;les, ‘in
the collapsed portion, weighted appropriately.

To obtain the Theorem for Interactions, we assume that
N* = _I\I_f(xl*, X%y aees X¥, Y*) is to be collapsed over part of Y¥,
that is, over the y-values ¥ ., ¥pin5 +++s Ypip We denote the (M + 1)-
variable interaction in N¥ by Q(N*).

Theorem IIT.3 (Collapsing Theorem for Interaction, C.T.I.):

a(s) - a(s') = T Q)

Proof':

Q(s) = Q,Y(Xl, Xys voes xM) - Q(Xl, Xps vees xM)

Q(s') = QZ(xl, x2, ceos xM) - Q,(Xl, xz, cees xM)
Q(S) - Q(S') = Q-y(xls ceey XM) - QZ(X].’ DR XM)
) - = 35 M )
Q(s) - Q(s') = Xi5 Xoy o0y X
J=n+l N Qyj 1> %2 M
N*
- N sz'*'l(xl, xga RS XM)
N* m+k N
= s A oq (X, X, eens Xy)
N jemtl N* Qyj 1> %2 M
-Q X,y X s eeey
zm+l( 1 27 X'M)]

* .
= ¥ Q.(Xl*, X ¥, eeey X%, Y*)

Q. E. D.



w
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Since interactions may be negative, it is possible for Q/S°) to be
larger than Q(S), in contrast to the situaticns for H and T. This
means that when a system is viewed through a many-tc-one mapping, the
interaction terms for the image-system may bte larger than those for the

original system, i.e., the system may appear tc be more zomplex iin

some sense) than it really is.

3.2.3. Remarks on the theorems

At this point it should be made clear that although some of the
proofs have been stated in terms of "last rows”, "last columns”, etz.
for notational reasons, and have therefore implizd that the frequency
tables are finite, minor changes in the preoofs would remove that
implication; the C.T.T., C.T.E., and C.T.I. apply also to mnonfinite
tables.

Moreover, each of the thecrems has a direct analog in terms of
continuous variables. For these, collapsing over certain values of a
variable Y becomes integration over an interval of Y, and N*/N becomes
the probability of the collapsed portion of the distribution. The
only place at which care is needed is in the distribution resulting
from the collapsing; the probability which beccmes concentrated in
the collapsing process must be dispersed in a sheet c¢f finite thickness
to avoid a distribution which mixes delta "functions" with finite
functions, for information theory canrot handle that mixture.

These three theorems - C.T.T.; C.T.E., and C.T.I. - have

several corollaries, among them the following:
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Corollary III1.l

a) T(Xp : Xp t «ev @ Xpy) = T(Xp ¢ Xp ¢ wo & Xy g)

+ T(< Xy, Xpy wees Ky g > 0 xM)
b) H(X, X5, «eey X,) = H(X 5 X55 ees xM_l)

+ H

)

(x
<Xl, Xa, ooy XM_1> M
These equations, derived elsewhere in the literature, follow from the

C.T.T. and C.T.E. by collapsing over all values of XM,

The following corollary is a very important one for the decompo-
sition of system constraints, to be studied later. It says, for
example, that if X = < Xl,X2,...,Xm >and ¥ = <Y;,Y5,...,Y, > are
independent, then so are any X; and Yj.

Corollary I11.2

Let T(Xl D ST XM) = 0, where each X, is a compound
variable <Xil’ XiQ’ ing

variable whose components are some or all of the Xij's, then

eeesy X, >, If X! designates a compound
i

T(X] + X3 ¢ .o ¢ Xy) = 0.
Proof:

Suppose T(Xl : X2 Poeee o XM) = 0. The previous corollary

implies that
T(Xy: X5t oee 2 Xy q) =0
T(<Xl, Xps eeey Xy g >0 XM) = 0.

From the identity T(X: <Y,Z2>)= T(X : Y) + 'I‘Y(X : Z) it follows that

and

(<X eeey X : X )=T ey ¢ X!
( 1? s M-l> M) (< Xl’ , ’ XM-1> M)

+ < e H <x - ">
oo ($X5ee Xy o> 0 <X Xe)



(W]
“0O

(where '<XM"X& > is the compound varisb.e waicse components are the

XM ‘s not in Xﬁ)o The left side of the ejuation is zero, and therefore
J

T(<xl, eeey Xy o> x;}ji) = {,
Consequently T(Xl PRyt eee Xy ot Xﬁ) =9, for
T(Xy:eooi Xy Xy) = T(XpeeoiXyy) + TLeXqpo00 Xyp > s Xg)
=0 + 0,

Similar analysis shows that

T(X, : Xy toeee t Xy ot Xy o Xy) =0
and so on.
Q. E. D,

The next corollary says, to put it picturesquely, that if an
observer of a system can sense only some of the values taken by each
variable, all other values registering only as "outzide the range of
the instruments,” then he can et least deduce from his observations
some minimum values for the entropy and transmission of the whole
system.

Corollary I1I.3

If E(S) is & frequency table and N* is any hyperrectangular

portion of it, then

a) T(N) > T T(W)
b) HE) > I B

Suppose a two-variable table N(X, Y) is collapsed over the

submatrix MX(X*, Y*) consisting of the last k; columns of N, the result



being N'(X, Z). Next suppose M¥ is collapsed over its submatrix
N¥(X*%, Y**) consisting of the last k, rows of MX, the result being
M(W, Y*).

(a) The following two equations follow from the C.T.T.:

M*

T(N) - T(N') = 5 T(MX)
(M) - T(M) = 3 T(NX)

Therefore,

o) = @) + 2 (o) + 55 T() ]
M

% N*
= T(N') + = T(M) + 7 T(N*)
_— N = N —_—
N*
T(N) =z - T(N)
where N* is the rectangular portion of N in the last Ky columns and

last k2 rows. The generalization to more than two variables is obvious,
proving part (a).
(b) The following two equations follow from the C.T.E.:

H(X, Y) - H(X, Z) = ;}I—i [ G, ) - H(X*)]
H(X*, Y*) - H(W, ¥*) = 1 [H(xex, yox) - H(ver) ]

Therefore,

H(X, Y)

]

H(X, Z2) + %ﬁ [H(W, Y*) + g; (H(X**, Y**) - H(y**»

- H(X*) ]

[H(X, z) - %ﬁ H(X*)] + %‘i H(W, Y*) - g.; H(y-x—*)]

%
+ %- H(X**, y**)

- 1(z) + [By(0) - - n(ex)] + - HOD
o BEACORE N

N*
+ =—  H(N*
N (m_)

Lo



L1
The first bracketed quantity is nonnegative, for HZ{X) igs the average
entropy is the columns of N', cbtained by a weighted summation of the
individual column entropies; %i H(X*) is the last term in the summation,
and the first quantity in brackets is thus a weighted sum (of non-
negative quantities) over all but the last columr. Therefore it is
nonnegative. The second bracketed quantity is nonnegative for similar
reasons, and thus
T H(NE)

proving part b for the two-variable case. The generalization to more

H(X, Y) = (a nonnegative quantity)+

than two variables is simple.

Q. E. D,

302,h,‘ The equivalence of transmission and statistical dependence

Corollary III.4, which uses the next Lemma, shows that if a
two-dimensional t;ble has zero tranémission, its columns are proportional,
i.e., that zero transmission impliés statistieal independenceo‘

Lemma IIT.L
Let N be a 2-by-2 frequency table with T(N) = O, Then one
column of N is a non-negative multiple of the other.

Proof:

The distribution N may be typified by

1 a

b abce

The second column is a multiple of the first if ¢ = 1. T(N) can be

expressed in terms of a, b, and ¢ as follows.



L2

1
T(_N) T { (L+a+Db+abc)log (L+a+b+a c)

+llogl+aloga+blogb+abclogabc:
- (L+a)log (1 +a)-(1L+0b)log (1L +0D)

- a(l + be) log a(l + be) ~ b(1L + ac) log b(1 + ac)} .

Assuming T(N) = O, expanding, rearranging, and cancelling, we obtain
(L+a+b+abe) log (L+a+b+abc)+ abe log c
= (L +a)log (L +a)+ (1L+0b)log (L+D)
+ a(l + be) log (1 + be) + b(1 +ac) log (1 + ac).
Calling the left side f(c) and the right g(c), this equation f(c) = g(c)
has a solution at ¢ =1, i.e., when the second column of N is a

multiple of the first. To show that there are no other finite solutions,

we note that

Aéf_é.‘il= ab {2 logp e + logo(c + ac + be + abcg) }

dgle) _ 2
T —-ab{Zlogge+log2(l+ac+bc+abc )} .

f(c) equals g{c) at ¢ =1, and for ¢ > 1, f(e) has a steeper slope
than g(c); this implies that f{e¢) > gflec) for ¢ > 1. Similarly,
f(e) < gle) for ¢ < 1. Therefore, ¢ =1 is the only finite solution
to f(c) = g(c), i.e., to T(N) = 0.

Q. E. D.

Corollary III.4 (to C.T.T.):

Let N(X : Y) be a frequency table with m rows (of x;) and
n colums (of yj). If T(N) = O, then the columns of N are
all nonnegative multiples of NiX). Thus zero transmission

implies statistical independence.
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Proof:

If N has zero-rows or zero-columns, they may be permuted to the
bottom and the right, and columns may then be permuted to put a positive
element in the (1, 1) position; this permuted form of N we call N'.
Clearly if the Corollary is true for N', it is true for N. Suppose
T(N') = T(X) = 0.

Corollary III.3 says that the upper left 2-by-2 submatrix of
N' (in fact, any rectangular submatrix) has zero transmission. The
last Lemms says that the columns of this submatrix are proportional,

i.e., that the elements in the second c¢column are k12 times their row-

mates in the first column, with kl2 > 0. The same argument shows that
in the submatrix of rows 2 and 3 and columns 1 and 2, the same propor-
tionality holds, and so on for all elements in columns 1 and 2; all
elements in column 2 are k12 times their rowmates in column 1.
Similarly, the elements in column 3 are k23 times their rowmates in
column 2, and so on. Finally, each of the columns is proportional to
the column-table N'(X) formed by collapsing N' over its rows.

| Q. E. D,

Of course if N(X, Y) has proportional columns it also has
proportional rows; this coﬁdition is equivalent to statistical indepen-
dence of X and Y.

It is well known that if X and Y are statistically independent
variables, T(X : Y) = 0. Corollary III.4t shows that the converse also
nolds; that 1f T(X : Y) = 0, then X and Y are statistically independent.

Thus transmission and statistical dependence are equivalent concepts

couched in different languages.
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The argument easily generalizes to many variables; if T(S) = 0,
then any subset of variables in S is independent of any other (disjoint)
subset.

If the frequency table on hand is the record of an actual
experiment, the transmission must of course be interpreted in light of
the vagaries of random sampling. To date an adequate test for the

significance level of T has not been produced.

3.3. Can genuirely complex relationships be broken down?

If a system contains many variables interacting in a complex way,

k%Y
o, auman ©

it is fre for
of them simultaneously. When this happens, it is common for the human
to observe a few variables at a time and then try to piece together
the behavior of the whole from those cbservaticns. Such an attempt
sometimes succeeds and sometimes fails; we want to ask if there is any
theoretical limitatioh on sush an attempt, specifically with regard to
the information-theoretic quantities involved.

To put the guestion vividly: suppose an observer capable of
observing any N or fewer variables at a time is faced with a system of
N + 1 variables. Can he deduce the entropy, total transmission, or

highest-order interaction of the system? To approach the problem we

define a few terms.

By a simple expression we will mean a single entropy, transmissicn,

or interaction term explicitly involving variables - e.g., H(X),
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TZ(<W, X>:YJ, Q,xl(< X5 X,>, X33 Xh}o An expression is a sum of
simple expressions.

Any simple expression is either identically zero (such as

TX(X:Y)) or mey be reduced to a proper simple expression, in which no

variable appears explicitly in both subscript and argument;” for example,

the third example above is identically equal to Qy (x29 x39 Xl;:” which
1

is proper. The order of a simple expression is zero if the expression

is identically zero; otherwise it is equal tc the number of distinct
veriables appearing explicitly in the expression, whether or not they
are considered to be components of compound variables. The examples

above have orders one, four, and four. The order of an expressionm is

the largest of the orders of its simple expressiors.

It would be useful to find order-reducing identities - identities
which would express a simple expression as a sum of lower-order
expressions, thereby allowing one to view a complex relationship as
merely a summation of simpler relations. This is indeed possible
through the device of an auxiliary equation; e.g., if <X, Y> =W
then H(X, Y) = H(W). However, barring the use of auxiliary equations,
no orderwreducing identity can exist; relationships which genuinely
involve many variables can not be broken down.

Theorem III. L

let f = g be an identity in which f is a simple expression
of finite order M and in which g is an expression of order
K < M (and involving the same variables). Then K = M, i.e., g

contains a simple expression of order M.
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Proof:
(a) We first prove the thecrem when f is an unsubscripted
entropy, f = H(Xl, Xos ooy XM), by supposing K <M and obtaining a
contradiction., We define two distributions on S = i_Xl, XZ; cooy XM-} s

where each Xi has two values, 1 and 2.

The first, N(S), is defined by
nxl’x2’°°°’xM =2 [(xl +X, b .. * xM), mod 2]

and the second, N'(S), is defined by

n' = 1,
Xl’Xa’OOQ’XM

For example, with M = 3 they are as follows:

P r “r
4 *
1 2 1 2
N 1 2 0 1 0 2
%, X5
2 0 2 2 2 0
N' 1 1 1 1
1 1 1 1

To calculate any simple expreszior involving fewer than M variables
necessitates collapsing N and N' over the variables omitted; when thus
collapsed, N and N' yield identical distribubions and consequently
identical values for g. The two distributions yield different values
for f, however - an impossible cerndition if £ = g is an identity.

(p) If £ is any simple expreszsiocn of order M, identities of

the following form existB:
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f=htHX, X5, ooy Xy
where h is an expression of order less than M. Thus f = g may be
rewritten as

+H(X), X5, cooy Xy) =g - ho
Part (a) showed that the expressiom on the right is of order M; sirce
the order of h is less than M, the order of g must be M.

Q. E. D,

The thecrem does not say that both sides of any identity

must have equal order, and in fact that is not true; for example,

H(X,Y) - HX(Y) = H{X),

It does mean that if a set of variables are actually related in a
holistic manner, the relation cannot be broken into a sum of simpler
relations without something being lost. While this is perfeectly true
in general, in many cases of practical interest a high-order relation
can be broken down without losing “$oo much.” In seénion 4.3 we will

study systems which lend themselves to such decompositions.

3.4 Maximizing transmission between related variables

Introduction

An important problem is the following. Suppose X and Y are
variables taking values from sets X = { Xy l 1<i sln}- and
Y = {'yj \ lejs n.} , and suppose R <« X x Y is a reiation between

X and Y. How should the frejuencies in E{Xa Y) be distrivuted exclusively



over the couples in R so that T(X : Y) is maximized? In other words,
how can the transmission be maximized with respect to the constraint R?
While this is an interesting problem in its own right, the
answer is really crucial for the understanding of channel capacity.
For as will be explained in the section on that topic, the description
of a channel linking supervariables X and Y is in fact the description
of a relation between X and ?} and the problem of maximizing TL(i : Y)
(i.e., finding the channel capacity) is the same as the problem
considered here, only with limits involved.
It will be shown in the chapter on regulation that the trans-

mission between the regulator, R, and the variable it is regulating

therefore also of importance to regulation, particularly when there is

a relation between R and X.

3.4.1., The theorem

We start by denoting the matrix version of R by
R= [rj;]  witn
= 1ddm,n

1if <x.

19¥5> is in R,

rij =
0 otherwise.

We consider here only frequency matrices N(X,Y) = [nij] m,n Sompatible
with R, i.e., such that couples not in R occur with zero frequency.
Nothing is lost by restricting attemtion to cases in whichm < n and

R has no zero-rows or zero-columns. Since the argument involves

permutations of the rows and columns of N and R, it will be assumed
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henceforth that when one matrix is permuted, the cther is permuted in
the same way. We denote a permuted form of a matrix with primes.
For every R, there is at least one "largest one-to-one mapping"
M having the following properties:
i)} m < R,
ii) M has domain Z < X, where Z contains k elements and k < m,
iii) ~ maps Z one-to-one onto a subset of ¥,
iv) nc other mapping exists which obeys (i}, {ii), and
(1ii) but on a larger domain than Mo
The number k, giving the number of elements in /u's domain, is dictated
by R and may be denoted k(R).
The distribution N,, with
nid ) 1if <xy, yi> is in M
0 otherwise,
gives T(N,) = log k(R). It is always possible to make T{X : Y) = log k(R),
by assigning equal frequencies to the couples in /u; however, by that
assignment it is possible that certain values of X and Y, not excluded
by R, would be assigned zerc frequency. Consequently H{X)} and H(Y)
would be lower with the assigmment N, than with some other distributionms,
and since
T(X : Y) = H{X) +H(Y) - H{X, Y)
there is good reason to suspect that some distribution other than Ny
will maximize the transmission.

The answer to the question rosed above is given by:



Theorem III.5

Suppose R is a subset of X x Y. Then for any N(X, Y)
compatible with R,
T(N) < log k(R).

and thus N, above maximizes T{N).

To state the theorem somewhat picturesquely, X and Y can
communicate best through a one-to-one mapping, even if the price of the
biuniqueness is that some of their values never get used. It doesn't
pay, as far as transmission is concerned, to introduce more values if
their introduction brings in ambiguity.

Proof':

If k = m, the theorem is obviously true since T(E} < log m for
any distribution N; the smaller dimension of a matrix limits the
transmission. If k < m, we need the following Lemma:

Lemma ITI.5

If k <m, R may te permuted to a form R¥, which in partitioned

form is
(a4 g g
S S I
R¥ = D | E | F
it T
¢ i | 1L

and in which the square submatrix (A, B, D, E} has an ascending diagonal
of k(R) 1's and the submatrix (E, F, H, I} is a zero matrix.

Proof of the Iemma:

The mapping M prescribes in a matural way a permutation of R

which displays an ascending diagonal of k{R) 1's across the upper

50
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left corner of the resuiting matrix, these 1l's corresperding to
couples in the set Mo Pictorially, R' is *hen as shown in Figure 6,
with the diagonal line representing a string of 1's.

The submatrix L must be a zero matrix, because if there were a 1
in L, row and column permutations could append it to the existing
diagonal. Henceforth we will show zero matrices by shading.

The rows which contain 1l's in J may be moved to the top of R’,
and appropriate column permutations, always possible, may be performed
to preserve the diagonal of 1's intact. This done, R" is as shown in
Figure 7, wheré J1 has no zero rows. Now K> must be a zero matrix,
since otherwise a column permutaticn could put a 1 in L while preserving
the diagonal.

Next, the columns which contain 1's in K, may be moved to the
left and appropriate row permutations performed to preserve the diagenal.
This gives R", shown in Figure 8, in which K3 has no zero columns.

The process is now repeated with M, g:’and P playing the parts
of J, K, and L; P must be a zero matrix, for if it were not, a sequence
of column permutations could put a 1 in L while preserving the diagonal.
If there are no rows with 1's in M, the Lemma is satisfied; if there
are such rows, they may be moved to the top of M and the diagonal may
be preserved through column permutations. Next the columns with 1l's
in N, if any, are moved to the left side of N while preserving the

diagonal, giving shown in Figure 9, where J; and M; have no zero

rows, and El and Bgihave no zero columns.
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This process, iteratively applied to any matrix EL, must end
either by disclosing a 1 in a position incompatible with the hypothesis
that the diagonal is maximally long, or else by completion of a rectangle
of zeroes which "touches" the diagonal. This proves the Lemma.

Note that the process described amounts to an effective procedure
for finding the largest one-to-one mapping contained in R (or one of
them, if there are more than one).

Returning to the proof of the theorem, we assume R has been
permuted to the standard form R¥, and that the distribution N, unspeci-
fied as yet, has been similarly permuted (so that it too has the large

rectangle of zeroes).

r - - i N
Ny | Ny, | Ny Noo | Np3
—_——— - | —— |
* = e s
N N21 : Néz : N23 where y | N 0.
‘N“FN"I‘N—- 32 :_3.2
31132 1733 - -
L | | _

Suppose now that N¥ is partially collapsed by adding together

the columns in the right-hand submatrices, obtaining Né;

s

- R R
I‘711:"'[1 e
| -
Ei Nél L 2 where o has one column.
== o
N lo Q
ST S
| (-

We recall that permutations do notalter transmission; therefore

T(N*) = T(N). The C.T.T. (theorem III.1) consequently states that
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(w i
N.. I N
N12 + Nl —t&é_‘_:_l%-
T(N} = T(Ng) + mm-in - T & e
—— R I,
o 190
R

No + N
| 12 13 \
Tt + S T{\ Nle“;])
[

i

Suppose we are given an arbitrary N, and we set about to maximize T{N)

e

by adjusting the frequencies in Ny, and NiBO The row sums are fixed
(by M;, which is in Na)o Recall that B, the submatrix of R¥* corresponding

to le, has an ascending diagonal of 1's; hernce, the row *totals for

(Mo, N13) can be assigned to the diagenal positicns in Ny,. That

assignment maximizes T(H) without assigning any frequency to NlBO

oo TR

Nig is not needed for an arbitrary Ei’ it is not needed for the N,

which maximizes T(N), i.e., there is an N which maximizes T(N) and for

If

which ng = 0.

The last conclusion is the heart of the proof, for meximizing

T(N) when N is

Np ' om0
Aoy 12 =
——_—l ————— l———_
N = Ny 12 1 ¢
e IS P
N (" '
S0 0= =
- \ [ a

is easily accomplished by setting
1 if 24 5 is cn the ascending diagomal,
njy = i.e., if i + j =1 + k(R),
0 otherwise,
yielding T{N) = log k(R).

Q. E. D,
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3.4.2. An attempt to generalize the theorem

Let R be a system relation on § = { Xl, X2, ccoy Xi’ a,o,iﬁMI .
Then R contains a largest subset M such that (i) for every X; in S,
the projection mapping pry maps M one~-to-cne onto a subset of X,, and
(ii) no other mapping satisfies (i) and has more elements than w.
Letting k(R) denote the number of elements in X it is tempting to
conjecture, as an M-dimensional generalization of the above theorem,
that for any N(S) compatible with R,

T(N) < (M-1) log k(R).
However, the generalization does- not always hold for M >2. For

example with R = S ={x, Y, z} the following N(X, ¥, Z) has T(N) = 3,

but (M-1) log k(R) =2 log 2 = 2.
X X
1 2 3 4 1 2 3 4
1]l0 0 0 o0 1 {0 0 01
Y 2|0 0 0 O Y 20 0 1 0
3101 0 ¢ 3]0 0 0 O
L4 {1 0o 0 O Lo 0 0 O
Z =1 7 =2

After introducing some new notations to deal with dynamic
variables, we will apply the results of this section to the problem of

finding the channel capacity for networks of autcmata.
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3:5. Information quartities fer dynamic variables

Introduction

We normally think of a dynamic variable, e.g., X{t), as one

when we wish to consider both {1} the variable ¥{t_), i.e., the

variable whose values are the possible values of X at the specific
time t, (but with t, arbitrary), and (2} the variable X{t), i.e., the
variable whose values are the possible trajsctcries X can take over an
extended time interval. To distinguish the irnstantaneous - from the
traje¢tory-variables, we call the first simply a variabls and the
second a super-variable. The two ars of ccurse related, axd in this
section we will explore that relation as regards the information
quantities involved.

In later sections on chamnel capacity, information transfer,

and regulation we shall rely heavily on the concepts of this chapter.

3.5.1. Defiritions for limit-quantities

It frequently happens that a system S = { Xl, Xas 0,00} is
composed of variables all having the same statlistical distribution, or
is composed of groups cf variables, all within each group having the
same distribution. A stationary regular Markov sequence

e, X2TE XA L

where the superscripts denote successive instants in time, and the

states in a chain of identical MWI'S,

X of X

- __*Xﬁ;i;> > X
R
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where the subscripts denote successive positions in the chain, are
one-dimensional examples. For such a system, certain limit-expressions
are meaningful and have profound interpretations in the study of com-
plex systems. We will denote these limit-expressions with a superscript
L. At the start, a word about notation is in order. We will use
subscripts in this section and elsewhere to distinguish variables or
super-variables which are being thought of as different in nature; we
will use superscripts, on the other hand, as indices for time. For
example, X, and X, might be a set of temperature-values and a set of
humidity-values respectively; the variable "temperature at time ="

v
would be denoted X, and the variable "humidity at time 7" would be

denoted Yg o

To simplify notation, we define the super-variable X or the

s-variable X as follows:

X=<xt, X2, veey XY, oo >
X corresponds to an indefinitely long strip of a protocol,

time: 1 2 3 4 5 i
1 2 x3 voill IS <2 B X3 sg

X : X X

and one value of X is one possible way to fill inm the protocol. Of
T . x x
course X may have components, say if X~ = <U , V >; then
X = <U,V> is a supervariable with components.
We define a super-system S as an ordered set of super-variables:

5= {5, % s By

It is important to distinguish S = {Xl, Xz.} , & supersystem of



supervariables, from '<Xl, X2>=, 3 gupervariable with compouents,

The latter corresponds to a protocol of two strips,

1 2 3 i 5
Xy Xy ¥ Xy X{ S}
1 2 3 b 5

whereas the former corresponds to a set of protocols:

1 2 3 b 1 2 3 4
:x;l X xl xl %3 x2 x2 x2 X,

Thus the prefix super- or s- and the cverbar imply variables which are
really infinite vector-variables. We will use the term "variable",
henceforth, to include both ordinary- acd super-variables, using the
prefix only when a super-variable is expressly implied; likewise the
term "system" will include both types, so that a super-system is also
a system.

We denote the limit-entropy of X or L-entropy of X by HL(f)

and define it by

= 1lim 1 1 .2 n
H‘L(X)= ;H(x,x,owx>

if the 1limit exists. The n-th term in the sequence is what Sha.nnon5

calls GND Similarly, the limit-entropy of a super-system

S = iiﬂl’ fz, sooy fM} is defined as

. 1im 1 1 1
HY(S) = H («<xl X35 eees Xp >,

>® n 1°?

ST AP ~E NN S ST B

- Bl" H(<SY> , <825, ...; <s%> ).

The nctation is slightly redundant in that L-entropies are

defined only for s-variables, but this redundancy will be kept, for
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emphasis. Continuing the definitions in their general version, we

define the L-entropy of S, conditional on S, by

Hé‘-b(sa) -5, U §,) - H'(S, ).
And so on. The definitions for all simple limit expressions, except
for HL(f) and HY(S) which are primary expressions, are obtained from
the analogous non-limit definitions by superscripting with L, and

overlining all variables. For example, the L-transmission over S =

{_fi, ié, see EM} is defined by

V(E) = HU(E)) + HR) + ... + H(Ry) - HO(EL K0T

By & simple limit-expression we will mean a single L-entropy,

L-transmission, or L-interaction term explicitly involving s-variables,
€. (%), T%(ﬁi?)o A limit-expression is a sum of simple limit-

expressions.

3,5.2. The relation between non-limit identities and limit-identities

One of the post powerful thecrems in information theory is the
one which states that an identity in simple expressions remains an
jdentity if the same subscript is added to each simple expression9o

The reader might be tempted to suppose that an identity in
simple non-limit expressions remains an identity if each term is
superscripted with L and all variables are overlined. Since the
definitions fer all L-transmissions and L~interactions are related to

the non-limit definitions by precisely that operation, the supposition



is clearly true for identities not involving entropies. If entropies
are involved, however, the supposition is by no means cbviously true,
for a limit-identity has on its two sides the limits of two distinct
sequences, and to establish the identity these limits must be shown
to be equal.

Theorem III.6

An identity in simple expressions remains an identity if
superscript L is added to eackh simple expression in it and every
variable is overlined. That is, every non-limit ider ntity implies
a corresponding limit-identity.

Proof:
Let f = g be an identity in non-limit expressicns, involving

variables Xl, Xe, seay XM:
£(X15 Xos ooos Xy) = 8{Xy, Xo, ovey Xyio
Substituting <Xi, Xi, sooy X§> for X5 <X%, cooy X2> for X5, ete.,
1 2 . \ . .
and <XM, XM, cooy Xﬁ > for XM, another identity is obtained:
f( @}Mox >““,<ﬁpn,mﬁ) (<XSMOJ1>N°W
1 T
XM,OOO,XM >) °
The identity is preserved if both sides are divided by n; therefore,

for all n = 1 we have

1 1 1 n 1 n
‘ﬁ f(<Xl,ooo,x§1.>’o°0’<XM,OOOQX-M>>—=-;{ g(<xl,ooc,xl>’oee,

1
Xgoeeely >) -
- Le = -
Our goal is to show that fL(Xl Tysooosky) and g (%) X,,....K,) are

identically equal; each of these limit-expressions represents the limit

61
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of a sequence, and to show them equal we must show that the two sequences
converge to the same limit. That they do follows from the fact that the
two sequences are equal in every term, and that is the case since in
the last identity above, the expression on the left is Just the n-th
term in the sequence whose limit is fL(ii, ié, cvey iﬁ) while the
expression on the right is the n-th term in the sequence whose limit
is gL(ii, ié, cees Xy)e
Q. E. D.

Deeper exploration of limit-expressions and their profound
importance for complex systems will be deferred to a later section;
here it will suffice to state that HL(Z) is the information (per step)
carried in the sequence {X} and TL(X': Y) is a measure of the linkage
between the sequences {X} and {Y}, per step. When X is the input
and Y is the output of an information channel, TL(i : Y) is the
amount of information usually thought of as "transferred through"
the channel, and it is bounded by the channel capacity. We will

take up the subjeet of channel capacity in the following section.

3.6. Channel capacity, constraint capacity, and the capacity of

automata

Introduction

The notion of channel capacity is one of the most fundamental
in information theory. It applies, classically, to an "input-output”

system and is the limit on how much information can be pushed through
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it per unit time. We will show here that the notion need not be

restricted to "input-output”

systems nor to systems with only two
"terminals;" the generalized notion will be referred to as constraint
capacity, to eliminate the connctation of unidirectional flow that
the word "channel" carries. Coastraint capacity will reappear in a
later chapter, when we discuss the decomposition of constraints in a
dynamic system, as an upper bound for the linkage between two or
several dynamic variables in a dynamic system.

In later chapters on regulaticn in dynamic systems, it will
become apparent that the channel capacity of a regulator is of
fundamental importance for its capacity as a regulator. Since a
regulator is not always describable as either a machine with input
or a mapper alone but can usually be described as an automaton, the
calculation of the capacity of automata is of prime interest to this
study, and a method is presented in this chapter by which that calcu-~
lation can be made. The method allows calculation of the capacity
for any network of interconnected automata, in fact, and it produces

as & by-product the information necessary to construct a source matched

to the network so as tc realize the maximum information flow.

3.6.1. Channel capacity and constraint capacity

We consider a super-system S = §;§' in which X is the input

s-variable for a channel and Y is the output s-variable:

Y
=i

X > Channel
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A pa.rticulaz" value of X = < Xl, XZ, ...> is a particular sequence
of input symbols to the channel, x being the input symbol at time i.
The channel specification is in fact specification of a relation R in
the product set X x T, and the channel capacity is defined by

C = max { TL(f ::f)}
where the maximun (or least upper bound, if there is no maximum) is
over the various distributions _Ii(-X-, ?) compatible with R.

For many channels of practical interest, the order of maximiza-

tion and limit-taking may be inverted, giving

c = m 1 [ma.x T(<xE, X2, ..., X >:<¥, Yo, ... T >) ]
now n

The maximization is that considered in section 3.4, namely maximizing
transmission under constraint by a relation.

The relation specified by a deterministic input-output channel
is normally a mapping from X (and perhaps the channel's initial state)
into Y; for such a channel, H%(T) = 0 and therefore

C = max {’HL(YW } .

The characterization of the channel as "input-output” derives
from the relation R, not from X or Y. By considering arbitrary relations
on arbitrarily many super-variables, we can generalize C to the notion
of "constraint capacity" of an object. Supposing there is a super-

system S = {il’ }_('2, ooy YM} , and the object specifies a relation R;

RcX) xXp X ... X Xy,

the constraint capacity of the object is denoted C and defined by
C = max { TL(§)}

with the maximum (or 1. u. b.) taken over all the possible distributionms

E(-ST) compatible with R.
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It may strike the reader as presumptous to speak of a relaticn
in a set of infinite size. In practice, of ccurse, R is ususlly a
highly iterated version of a very simple relation on a finite set.
For example, if X and Y are the input and state supervariables for a
MWI with mapping f : Xi X Yi -> Yi+l, then

- e
<X, Bis in R &> for every i = 1, <X°, Y&, ¥ > is in 7,

. X g
where f is viewed as a relation in (X' x Y*) x Y+ 1. R is thus shown
to be an expanded version of the three-variable relation f.

The treatment thus far has not differentiated between "noisy"

and "noiseless" channels. That topic will be taken up in section 3.6.k.

3,6.2. An example of constraint capacity

As an example of constraint capacity in more than two dimensionsz
(variables), we define a relation R on S = {i, Y, Z} , Where each of
the s-variables takes, at each step, one of the values 1, 2, or 3:

<3(-, Y, Z> e R & for every i = I'L, Xi, Yi, and Zi

all take different values, and
Y > 2% if i is even, Y& < 2zl if 1
is odd.
This is eguivalent to
<%, ¥, 7> e Rep if 1 is even, <X, ¥, 21> is
<2, 3, 1>, <3,2,1>, or<l, 3, 2 >;
if i is odd, <Xi, Yi, Zi> is
<3,1,2>, 1,2, 3>, or <2, 1, 3>.
The distribution N(X*, Y*, z%), with

n =n = 13 others zero

3,2,1 1,3,2
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when i is even, and
= = M (o]
n3,l,2 nl,2,3 1; others zer

when i is odd, maximizes both T(Xi : Yi) and T(<:Xi, s Zi); there-
fore it maximizes T(XfL .Y Zi), at 2 bits. The extension of that
distribution maximizes TL(i': Y: 2z ) at 2 bits/unit time, so the
constraint capacity associated with R is 2 bits/unit time. The relation
represents a real constraint, since with no constraint (R = §), the

constraint capacity would be log 9 = 3.17 bits/unit time.

3.6.3. Channel capacity of Moore automata

3.6.3.1. The theorem

Viewing the object (the "channel") as a set relation has led to
the solution of an outstanding problem - that of finding the channel
capacity of an arbitrarily connected network of MWI's, mappers, an@
Moore automata.

Consider a finite network of arbitrarily interconnected Moore
automata, as in Figure 10 where the circles represent automate and an
arrow from one circle to another indicates that the output symbols
from the first automaton are input symbols to the second. Further
suppose that the network acts as a communication channel from a Source
to a Receiver, the "input automaton” accepting only Source symbols as
input and the Receiver observing the cutput symbols of the "output
automaton" only. This section will provide a procedure for evaluation
of the channel capacity of such a network and of its component automata.

There is no loss of generality in assuming that only one

automaton accepts inputs from outside of the network, that there is



Source

Network

Receiver

Figure 10,
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only one Source, that the input automaton accepts only Source symbols
as input, or that the Receiver observes only one automaton; all other
cases may be reduced to this one by nominally combining elements,
recoding the descriptions of elements, or introducing one "delay
automaton." None of these modifications affects the channel capacity
of the network.

The network itself may be viewed as a Moore automaton, of course,
so that the problem of finding the capacity of a network reduces to
that of finding the capacity of a single automaton. On the other hand,
each arrow in Figure lb can be thought of as a unidirectional channel
and may be labeled with its channel capacity, which is the capacity of
the automaton from Vv;hich the arrow emanates. One upper bound for the
network capacitylo is the minimum value among all simple cut sets,
where the cut sets separate the "inéut automaton" from the Receiver and
where the value of a cut set is the sum of the capacities of branches
in the set (but only counting branches directed from the input toward
the receiver). Thus the calculation of this upper bound for network
capacity also requires the calculation of capacities of single automata,
to which we now turn. The method, in essence, is an application of
theorem III.5, setting the input and output séquences in biunique
correspondence.

We consider a Moore automaton A with a finite input alphabet
ﬁ.xl’ X5, eeey Xk‘} = X, a finite state set {sl, Soy eeoy sm.i =8, a
finite output set {yl, Yo ooy yn} =Y, a state function f: X x S 8§,

and an output function g: S »Y. See Figure 11.



xt

Figure 11.
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The state-transition matrix A = [?‘ij ]m,m for A is defined by

1 if dx ¢ X s.t. f(x, Si) =8

=

A5

0 otherwise

and the related matrices /\2 = [‘}‘i' ] s 1l < p < n, by
JP m,n

Ay =4 hapifetd Ty

P 0 otherwise
Row sy of _/5_ indicates with a 1 every state-transition s; > 83 allowed
by f, and AB’ l €« p < n, copies those rows of A representing states
which g maps to yp,
For a discrete channel such as A,

-

- -
_ lim 1 .
C = 7 l_ma.x T(<Xp, Xop eoos Xp>: <Y, Yoy onny YT>)J .

To®
There is at least one sequence {Xl’ Xos eoos XT} for each sequence

{¥1, Yo, ..., Ty}, and from Theorem ITI.5 it follows that

c. = lim log Ny, (T)

y T>00 T
where Ny(T) is the number of output-sequences of length T allowed by
the input and the set relation prescribed by A. Shannon gives the
expression above as the definition of C for a discrete cha.nnel5,

We denote by NS(T) the number of state-sequences of length T;
Ng(T) and Ny(‘l‘) yield capacities Cg and Cy respectively. Cy is the
capacity of A.

Cg may be calculated from A by a method due to Shannon; he
shows5 that if A represents the allowed state-transitions, I the

jdentity matrix, and W, the largest real root of the determinantal

equation




71
det [_I\x-w;] = 0
then Cg is given by
Cy = logoWy.

If g is a one-to-one mapping, each state-sequence yields exactly
one output-sequence; in such a case Ng{T) equals NyT) for all T,
Cg = Cy, and the capacity of A may be calculated directly from A . If
g is not one-to;one the convergence introduced by g will force Ny(T)
to be smaller than N,(T). To find Cy in such a case we systemmatically
substitute new automata A', A", etc., with their relations R', R", etc.
in X x Y'being each a proper subset of its predecessor, until an

automaton A¥ is found for which

lim 1 _lim 1
Tow T 108 N (T) = Toe T 108 1\1:),('13)°
That is, Csx = Cyu

The sequence of automata A, A', A", ..., A* can be formed in such a way
that the state-transitiéns become increasingly constrained while the
output-transitions do not, so that Cy may be found from the state-
transition matrix for A¥*, which we will call A*.

We define a parallel set P as a set containing two or more

state~subsequences of the form

{si, Ser Sgs eee Si-t'n.k (n = 2)
all compatible with A, all idemtical in first and last states, and
all of which are mapped by g into the same output-subsegquence.

If a parallel set P exists, an observer seeing only the corres-

ponding output-subsequence is unable to determine which state-subsequence



in P has caused it, but the observer's uncertainty can be minimized

as follows. Given A, one can generate all the state-sequences of
length T allowed by A. If a .parallel set P is found, the constraints
on state~transitions can be increased, eliminating members of P until
exactly one sequence in P remains allowed; this is always possible, and
it amounts to the substitution of a new automaton A' capable of the
same number of output sequences as A but a smaller number of state-
sequences. One can next generate all the state-sequences of length T
allowed for A', and so on. Reiteration of this process will eliminate
all parallel sets of length T and will lead to a collection of no more

than mZN&(T) state-sequences, since for each first-state, last-state pair

b

o

~~

L - — e o e kL -~
LIE LULpUL=dCyucliCe

b

{of which there are at most mz) an observer o
which there are Ny(T»'would correctly assign one state-sequence. More-
over, the collection will contain no fewer than N&(T) sequences, since
the elimination process always leaves, for each allowed output-sequence
of A, one state-sequence capable of generating it. This process, then
provides a sequence of numbers, NO(T), vwhich give a capacity Cg:
Co = tl[,f‘;-,_]-ﬁ- log No(T).
From the inequality

2
Ny(T) < No(T) < m Ny('l‘) for all T = 1

it follows that Cy = Cy. Since C, may be found from A* by Shannon's
method, the foregoing justifies the following theorem:

Theorem IIY.7

Let W, be the largest real root of the determinantal

equation det [ Ax - WI ] = 0. Then the capacity of A is

log Wg.

T2



1&? embodies the original state-transition ccnstraints and the ones
introduced by the elimination procedure, at the point where ro further
elimination is necessary.

This calls for several comments., First, unless the transition
eliminated is a first-order one (e.g., =1 = S5) the states must be
recoded and the transition matrix redrawn before the elimination can be
made. For example, elimination of a third-order transition (e.g.,
<So, S}, 81> 4»55) requires that the states be recoded intc triples
(e.g., (sp, sy, s1) = sp)1) and that the correspording matrix be con-
structed before elimination of the transition (e.g., spyy 4>shl5)a
Corresponding changes in the domair and range of g must be made. The
effect of this relabeling is to increase the size of the matrix at each
step unless certain simplifications are possible; in the Example, some
common simplifications will be iilustrated.

Second, if at the Mth iteration of the process the matrix, call
it :ﬁigl, has become too large to make continuation feasible, an
approximation to C, ean be obtaired by using Jﬁiﬁl in place of A¥;

such an approximation, Cy, satisfies the inequalities
cC_<C, =C <C M = 1).

Finally, there exists a procedure, given below, for deciding
whether or not further eliminations are necessary, i.e., whether or not
AOD = Ax

We proceed next to outline the process in terms of matrix

operations.
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3.6.3.2. Calculation of capacity

Sets X, S, and Y and functions f and g are presumed given. As
the iterations proceed to substitute new automata for the original,

S, ¥, f, and g will change accordingly. To simplify the notation we
will assume, however, that S has m elements and Y has n (m >1, n > 1)
at the start of each iteration, signaled by & pass through Step 1, and
we will call the transition matrix A throughout.

Preliminary

If S can be partitioned into disjoint subsets such that no
state in any subset has any transition to any state in another subset,
then A is a merely nominal conjunction of smaller automata, one of
which 1s selecled by choice of the initial state. The capacity of A is
then the largest of the capacities for the smaller automata.

Transient states, which cannot be reached from any other state,
as well as persistent states, which cannot lead to any state other than
themselves, may be dropped from S without affecting the capacity. If
S is empty after all such states have been dropped, the automaton has
a capacity of zero.

Construct JL and 122} 1 < p <n as previously defined.

Step 1.

Observe the.ﬁlﬁ matrices to see if there exists any column of
any 112 containing more than a single 1. If so, proceed to Step 2. If
not, no further eliminations are necessary, as the comments for Step 2

will explain; proceed to Step 5.




Comment on Step 2

The successive postmultiplications of a row vector E. (with
d

e;j equal to 1 and the other elements all zero) by A, /\pz, /\p3,

ooy APT corresponds to the constructicn cf state-sequences starting

with S 3 and passing through states in the sets gml (ypz),- gml(yps),

coos g-l (ypT)o For E;A indicates by its nonzero components the set of

states reached in one step from s E;AA indicates those states

i D,

reached in two steps from 8 via some s in g"“l(yp J, and so on. If a

2
vector component equal to K > 1 results from the multiplication, there
must exist a related parallel set comtaining K sequences. Conversely, if
& parallel set never occurs, it must be the case that no vectors ever

arise from the multiplications which, when multiplied by any AIE’ yield

& vector component greater than 1. Clearly, if no column of A

-2

contains more than a single 1, multiplication of a vector of zeroes and

ones by AR cen give rise only to components of zero and one.

Step 2.

Define Ty, a set of row vectors, as follows:

le E, X’é, cao0g Vm} Where£=[;\il’ Al2, ooy Rim]o

Loy

Start the following substeps with N = 1.

Step 2a.,

Generate the set of vectors Q’N = ﬁVi/\ l l<pgn, Vi € TN} o

Comcancs —y—o

For N = 1, these vectors are simply tkhe rows of the matrices

A,\l’ A/\23 LA | A/\n°
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If any vector in QN has a component greater than 1, go to Step 3. If
none has, go to Step 2b.

Step 2b.
Form the set Ty, = Ty U Qe If Ty = Ty> 80 to Step 5. If

TN+1:¢ TN, increase N by 1 and return to Step 2a.

Comment "on Step 3

Entry to Step 3 results from the production of at least one
vector in Qy containing, in say its jth column, a number K greater than
1. The vector, produced on the Ntk pass through Step 2a, corresponds to
the existence of a parallel set P containing K distinct state-sequences,
each of length N + 2 and each ending with Sje All but one of the
sequences in P must be eliminated. To every componeht greater than 1,
of every vector in Qy, there corresponds such a parallel set requiring
eliminations.

Step 3.

Find the parallel sets by retracing the steps of multiplication
which led to the vectors in question and by consulting the function g.
Once the sets are known, all but one member in each set must be aeclared
examples of illegitimate transitions (of order N + 1). Rewrite the
transition matrix to show the previcusly allowed transitions of order
N + 1 and modify it (by substituting zeroes for the ones corresponding
to the newly illegal transitions) to form the state-transition matrix A
for Step 4. S, Y, f, and g must be modified to reflect the relabeling

of states described earlier.
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Step L.

Remove transient, persistent, and izclated states from S as
follows. If there exists a state sy in £ such that row Sy or column sy
in lL contains only zeroes, except perhaps on the main diagonal, remove
gx from S and revise A accordingly. Continue removing states and
revising ll,until every row and column cortains at least one off-diag-
onal 1.

From the resulting A and g, construct the :LR matrices and

return to Step 1.

Comment on Step 5

Entry to Step 5 indicates that the state-transitions, as
represented by the current A, are sufficiently constrained as to
guarantee that

2
Ny(T) < Ny(T) <« m Ny(T)
for all T. Thus the current A is A¥*,

Step 5.

Solve the equation
get [Ax-wr ] =o
for its largest real root W,; calculate C = logoW, = capacity of A.

The state-transition probabilities which maximize the output

entropy at C bits per second are given by

B: Al
Prob (s(t +1) = sj| s(t) =s;) = Pyy = ﬁf'° nﬁ%l

in which B is the eigenvector associated with the eigenvalue W, in the

[ax-w 2=

equation
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This result is from Shannon5, and it leads easily to the construction

of a source which is optimal for the channel.

3.6.3.3. An example

This example will illustrate how the process typically proceeds
and what simplifications are often possible. ILet A be an automaton
described by sets X = &xl, X5 x3} s S = {sl, S5 33, 8)s ss, s6},

Y = i Yis Yoo y3.} and functions f and g given in Table I.

Next - state function Output function

f Xy X, x3 g

s, S5 Sy S 54 ¥
So S3 S5 s3 So Yo
S3 s So 3 3 Yo
S} So s3 Sy sy, y1
s | 55 | %5 | %5 ®5 Y3
S¢ sy 8), S), S¢ Y3

TABLE I.. State and output functions of A .

Preliminary, State sg cannot be entered from any seS, so it can be

dropped; with sg gone, s cannot be entered, so it can be
dropped. State Sg cannot be abandoned once entered, so it can
be dropped; note that this means that the couple (sl, x3) must
never be allowed to arise. With § = { S15 Sps 334§ we can

proceed.




AL =

[}
i
—
O
S
o)

A = o

mcarcTmD

()
o

O
o
C
-
-
-

Step 1. A, contains columns with more than one 1.

Step 2. =
P Tl i Vv

2a.

l, ve’

—

0

i

x> o

Xi} with V, =V, [Oll]andyi= [111],

1 1] [0 1 1] [0 0 0]
1 1] x |oo o] =0 oo
1 1] [0 0 0] [0 1 1
1 1] [0 o o (1 2 2]
1 1) x o1 1] = |12 2
101 (101 1] |1 2 2|

The rows of /\/\l and /\/\2 are the vectors in Q,l°

Step 3. To each 2 in the matrix product there corresponds a parallel

set containing two sequences, and if the 2 is in the (i, j)

position of AA_, the sequences must start with Sy, pass through

an s in g"l(yp), and end with sj, since

[row i of /\/\p] =E A /\po

The parallel sets, subscripted with i va.n.d Jj, are as follows:

P12

PJ.3

P
P23
P

P

oo *

32 "
33 °

{(31932952)’ (s155558,) %
{(s1550083) (5183,) ]
{(s05525) (s555355,) §
{(e5055555), (55,85,85)
{(33’52952)’ (53’5"3932)}
{(s3550053)5 (s5555,89) |

L}
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The second order transition matrix, after relabeling states
as indicated on page 73 of the text, is given in tabular

form below.

s(t + 1)

S3) S1p Spp S3p S33 Sp3 0 833
531 0 1 0 0 1 0 0
510 0 0 1 0 0 1 0
Sop 0 0 1 0 0 1 0

s(t) S3p 0 0 1 0 0 1 0

513 1 0 0 1 0 0 1
S.. 1 0 0 1 0 0 .
23

1 0
533 0 0 1 0 1

The elimination of a sequence from a parallel set P is accom-
plished by substituting a zero for the corresponding 1 in this
matrix. The sequence in P to be eliminated may be selected
arbitrarily, although a good choice will minimize the subsequent
computations. We choose in this Example to eliminate the

following sequences:
81583583 575835533 Sp55358)
S55853535 S358358p3 53585583
(this is in fact not the best choice). The result is given

below.




Step 4.

s{t + 1)
531 1o S50 332 sl3 523 333
S31 0 1 0 C 1 0 o
515 0 0 1 0 0 1 0
Spo 0 ¢ 1 0 0 o) 0
‘I AN
s(t) 835 0 0 1 0 0 9) o]
Sy3 1 0 ) 0 o} 0 0
Sp3 1 0 0 o} 0 0 1
1 0 0
833 0 0 o} 1

S = i~331,812,322,532,513,523§533-§,

Observation of column S3p and row s,, indicates that $3p and
Syp can be eliminated from S. Frequently the second-order
transition matrix at this point is merely an expanded version
of a first-order matrix, allowing a further simplification,
but in this Example that is not the case. Table II gives

the matrix, in tabular form, resulting from the foregoing
eliminations and also redefines the output function g on the

relabeled states.

81



State s(t + 1) Output function
Transitions s31 810 313 §p3 $33 g
S31 0 1 1 0 0 S31 | Yo1
812 0 0] 0] 1 0 s12 y12
s(t) 313 1 0 0 0 0 813 yi2
823 1 0 0 0 1 323 yéz
333 1 0 0 0 1 833 y22

TABLE II. State transitions and output functions after simplification

8 = q 391:510’319’509:3991 .
[V Rkl )

‘-JJJ)
0110 0] 0000 O]
0 0 01 O 0 0 01 O
A= Jr0000[A,=110000
1 0 0 0 1 0 0 0 0O
100 01 0 00 0O
0110 0] 000 0 O]
0 00 0O 0 0 0 0O
l\21=ooooo oo =0 0 0 0 O
O 0 0 0 O 1 0 0 0 1
O 0 0 0 O 1 0 0 0 1




With these matrices we return to Step 1.

Step 1. AN, contains columns with more than one 1,
Step 2, T; = &vl, Vo V3, Vi Yz}with vpy={o110 0],

=[oo0o01 o], v; =100 o o, and

[lOOOl]o

- - -
2a. 1001 0 0 0 0 0
0 0 00 0 0 0 0 0
AN, = 000 ¢Coof Ay= 10110
0000 0 0110
00000 011 0
000 0 0]
100 01
AN, = 0 00 00
100 01
1 0 0 0 1

The rows of these matrices are the vectors in Q,

Q = { Vis Vh, V6 » }mth Vl and Vl& as above and with

vw=[10010], vy=[0o o000 0].
e T2'T1UQ1={Y.1’Y§’KQ’X£’Y2’Y§’Y_Z}*Tl
S AR
2b. Ty T, = T,UQ,

il

]

o o O




Step 5. The equation det [ A =Wl ] = 0,

has W, = 1.618 as its largest real solution.

-W

o)

1

-W

1-W

C = log 1.618 = 0.693 bits/unit time.

The eigenvector B is easily calculated to be

— -

The second-order state transition probabilities are given

below.

Pij

0.618
0.618
0.382

1.000

1.000 |

s(t +1)

813

S53

S3l
S12
s(t) 513
523

33

0.000
0.000
1.000
0.382
0.382

0.618
0.000
0.000
0.000

0.000

0.382
0.000
0.000
0.000

0.000

0.000

1.000

0.000

0.000

0.000

0.000
0.000
0.000
0.618
0.618

8l
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A source to realize thesz transitiocn probabilities can be

constructed by enabling it to follow the states of A (returning

to the original single-subscript notation, in which the set

of states is S = {,319 Szs s3} }, and to emit symbols as

follows.

If preceeding state and
present state of A are

Source emits X1, Xp,y X
with these prchbabilities:

s(t - 1) s(t)
53 Sl
1 S2
Sl S3
82 83
°3 ®3

Xy X, x3
0.618 0.382 0.000
1.000 0.000 0.000
1.000 0.000 0.000
0.382 0.000 0.618
0.382 0.000 0.618

With this source, the output sequence is a Markov process

and the transition probabilities are as follows:

y(t +1)

1
y; | 0.000
y(t)
y, | 0-382

The entropy of the sequence is 0.693 bits/unit time,

1.000

0.618

Before leaving the subject of automata capacity, we will make

one final observation which has been deferred to avoid confusing the

reader. This is that when A * has been found, one need not solve the

equation

det Eiilf - WI'] =0
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for its largest real root but may solve instead the simpler equation
det [s(&*) - Wl] =0

for its largest real root; the two roots will be the same. In the

second equation, S(l&*) is the matrix of allowable output transitions,

and it may be deduced directly from A* end g. For the example, this

is illustrated graphically in Figure 12. Arrows indicate allowed

transitions in lL?, above, and in g(!Lf), below. The output transition

matrix in tabular form is:

Y(t“’l’ t)
Yo Yo Yo
yel 0 1 0
L ~ o N\ - 0 -~
yit-2,t=1) ¥y1o 1 v 1
Yoo 1 0 1

The determinantal equation det [g(L\_*) - W}_]= 0,

-W 1 0
1 -W 1 =0,
1 0 1-W

has Wy = 1.618 as its largest real solution, and log Wo = 0.693 as
before.

The reason this simplification is possible is that when the
output sequence carries just as much information as the state sequence,
one gains nothing by maintaining the distinction between states which
map to the same output; the exact state sequence coﬁld be deduced from
the output sequence if needed. Therefore we can deal with a homo-
morphism of the automaton A%, and using g(ﬁ:*) amounts to doing Jjust

that.




State Transitions

Output  Trarsitions

y2|L< ( Yi2

Figure 12,
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3.6.3.4. Further remarks

This section has provided a means of calculating, or at least
approximating, the capacity of any arbitrarily complex (but finite)
network of MWI's, mappers, and Moore automata. Since a great many
mechanisms can be approximately modeled by networks of this type, we can
now calculate the capacities of many systems. In the chapter on regu-
lation we will show that the power of a regulatory system to regﬁlate
is limited by its channel capacity; consequently this section is of

substantial importance to the theory of regulation.

3.6.4. Capacity of noisy channels

A Moore automaton is an example of a deterministic channel - a
channel for which H%(Y) = 0. A nondeterministic channel may be viewed
as a deterministic channel with an unknown input, W, so that

L - -
B 5,5 »(Y) = 0 although H%(Y) > 0.

W
i

Deterministic

T
l.

Channel

If we think of X as "message input," Y as "output,” and W as "noise
input,"” and the channel as a relation R Between the three s~-variables,
this adequately characterizes the situation of the noisy channel.

HL(?) is the information rate for the output sequence. The
identity

(T) = VX : T) + u%(?)



shows that the information rate at the chancel output is the sum of
the rate at which information is passed from message input to output
and the rate at which the noise contributes to the output, since the
last term,

H%"‘(T) = T%(W : Y)
is the rate at which the noise "corrupts" the output in spite of the
message.

The last term is zero for noiseless channels. If the contri-

L

bution of noise is regarded as a nuisance, so that T (X : Y) is the

rate of "useful" information, then the channel capacity for useful

information is

Ly =
= 4
C seful max { T(X : !j%

with the maximum taken over the distributions N(W,X,Y) compatible
with both R and the assumed characteristics of the noise source,

What one regards as message and what as noise is arbitrary; W
and i'play symmetric roles, and the equation

H(T) = T°@F - F) + TN : T) + QP(HLE,T)
shows this clearly. If TL(W’: f) =0, i.e., the noise is independent

of the message, then

YY) = THK : T) + TF : T) + 'I%ﬁ X)

H'(T) » T™E : T) + TF : T)
and the output information rate is at least the sum of the message-to-

output rate and the noise-to-output rate.
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IV. INFORMATION THEORY AND COMPLEX SYSTEMS

Introduction

In this chapter we will focus attention on information theory
as it applies to complex systems. After a brief consideration of what
is meant by complexity, we will consider several information theoretic
tools for dealing with complexity in systems and will show how these
tools can lead to a better understanding of such systems, by discarding
excess information., The basic point of the chapter is that to under-
stand a complex system, one must discard much nonessential information,

PPN, ) B P s 4 A . 1
ana vae mewvnoas and

P ‘o
a greav

deal while preserving that related to the structure of the syétem°

4.1. Complex systems

4.1.1. Measuring complexity

We will deal briefly in this section with some of the difficul-
ties which arise in attempts to measure the complexity of & system, and
we will propose two measures which, although not perfect, nevertheless
are consistent with many of our intuitions. No attempt will be made to
deal with "systems" in the vague, general sense of that word, but rather
- only with systems as ordered sets of s-variables and as networks of
machines, probabilistic or not, embodying those variables. Moreover
we will consider only dynamic systems, in which the s-variables repre-

sent time sequences, and the focus will be on the complexity of the
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system's behavior rather than on the complexity of the system per se.

Complexity is a poorly-defined notionvin which the subjective
component so predominates that it is probably impossible to produce a
definition, much less a measure, acceptable to all people in all
circumstances. Yet few would disagree that there is a strong link
between complexity and information; the more information one has *to
take in to "understand" the system, (i.e., its bekavier), or to describe
it, fhe more complex it seems.

We speak of the complexity of a system as if it were a property
of the system, and that semantic wusage obscures the fact that complexity
is really a relation between the system and its observer, as is apparent
from the fact that the same "thing" {say a watch) may appear quite
complicated to one observer (a housewife) while not nearly as complicated
to another (a jeweler). When a "thing" appears less complex to one
observer than to another, the two may actually be considering different
systems (ioeo, different variables) or, if not, one cbserver may under-
stand the system better - have a more adejuate mental model of it, that
is, so that it appears more predictable and less mysterious.

One contention of this section is that it is to the observer's
"model" of the system, rather than to the system itself, that any measure
of complexity should be applied. By his model we mean the ordered set
of varisbles comprising the system, together with his best current guess
as to the internal dynamics of the system - what system-values are most
likely, which variables are causally linked to which others, what

functional relations obtain, and sc on - embodied in his a priori
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"probability" distribution P;, giving for each possible past history of

the system, the "probabilities" for the ensuing system-value

i <1Xi, Xé, ceey X§:>:

p; =p (st | sil, 812, L),

S

Dealing with the observer's model rather than with the system itself
serves to remove the problem of the observer, to some extent, by making
objective his knowledge {or ignorance, or intuition) about the system.
Having made clear that we will deal hereafter with models of systems
rather than with systems themselves, we can revert to use of the word
"system" as a convenient shorthand for "model of a system,"” bearing
the distinction in mind.

An apparently reasonable axiom to adopt with respect to a
measure of complexity is the following:

If one system is a homomorphism of another, then the
complexity of the former should be less than the complexity of
the latter.

This appears to be well in line with our intuitions, for a homomorphism
of a system is usually thought of as a simplified (i.e., less complex)
version. If this axiom is accepted, then the following is a direct
consequence of it:

If two systems are isomorphic, their complexities should
be equal.

For if a pair of systems are homomorphisms of each other, they are
isomorphic, i.e., relabeled versions of each other. We feel that

if we understand one system, we understand another isomorphic to it



(indeed, this is a common teaching device), and that therefcre the two
are equally complex. The axicm is quite strong in that it states that
the two systems in Figures 13 and 14, which are lsomorphic, are equally
complex. In some sense, the system of two parts seems more cemplex than
the other; yet our intuitions on this point are zcntradictory, for it is
commonly thought that a system which can be "broken down" into parts

is less complex than another, having the same number of states, which
cannot - at least that is a common attitude with respect to really

large systems.

The axiom rules out reduction of complexity through mere
relabeling of states and allows us to view every system as a one-
variable system, through relabeling. This may seem to conflict with the
observation that relabeling a system sometimes does in fact make it
appear less complex, as when one notices that a system which is under
study is isomorphic with another system which one "understands." This
is not necessafily a weakness of the axiom, but rather further support
for our insistencé on measuring complexity of one's mcdel of the system;
for what apparently happens when the isomorphism is ncticed is a
revision of the model, making the model for the ome system match that
of the other.

Another axiom is the following:

If a system is composed of a number of independent parts,
the complexity cf the whole system should be the sum of the
complexities of its parts.

If one is to be able to relate the complexitiess of the parts to that of

93



ol

System A
£ f
I
X Y
0 | 0] |
Y X
! t O ! '
fi X xY —> X fy5 YxX —> Y
X v
P; <0,I> <1,0> <l,i> <0,0>
<0, I> 0 0 0 1
) <l ,0> { 0 0] 0
|
X x vl <o, b 0 | 0 0
<0,0> 0 0] | c

vetability  disteibutioeg

P (s, s, 85

Figure 13.
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System B
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Figure 1k,



the whole, this would seem to be the most natural relation at least

when the parts are independent. Yet it is open to the objection that if

the parts are "similar" or even isomorphic, even though independent,

then the whole is in some sense not much more complex than one of its

parts. To counter that objection would require bringing in some notion

of similarity or else scrappiﬁg the axiom; we will do neither, just

regarding the weakness which results as the unfortunate consequence of

trying to find & simple, relatively unsophisticated measure of complexity.
The entropy function is consistent with these axioms, and we

therefore propose two measures of complexity related to the distribution

Py (st \81'1,81'2,...). We define static complexity Cq as the uncer-

tainty as to which system-value will occur at any instant, if the past
history is not known,

¢ = H(si
g (st)

and the dynamic complexity Cp as the same uncertainty, if the past

history is known,

- i
Cp=H  gi-2gi-1 (st).

e oo

Both Cg and Cp are obtained from Pi,'the observer's model at

time i, and therefore they change, in general, as the observer revises
his model. If the observer starts with a model admitting of complete
ignorance, then Cg and Cp start at log N, where N is the number of
possible system-values Si, and the complexities decrease thereafter,
although not necessarily monotonically, presumebly until the model

represents the objective system well.



The dynamic complexity Or is zero if the model is deterministicy
this is consistent with the feeling that deterministic systems, althcugh
they may be complex {via CS), are not complex in their style of dynamic
progression.

These measures of complexity have much to recommend them,
although they have apparent weaknesses; the contention of this section
is that the noticn of complexity is sufficiently vague that any measures
will be found wanting in some respects, but that Cg and Cp are good

measures at least for many purposes.

4,1.2, Relevance of information theory to the study cof complex systems

We will mention in this section some common attributes of
complex systems and the relevance of information theoretic methods to
their study.

Perhaps the most obvious feature of really complex systems is
that they are large - not physically, but in the number of system-
values possible; frequently there are many variables, interdependent
in a non-simple way, with each variable taking many values. As larger
and larger systems are considered, the point is soon reached beyond
which the humen, or even the fastest computer, cannot practically ccpe
with the whole system in detail, and thé complexity must be "reduced"
by substituting a new system, related to the original system but simpler
than it. A way of doing this which is fregquently possible is tc view
the origiral system as composed of parts, each of manageable complexity

and all related in a not-too-complex manner. Another is to deal with
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a homomorphism, or an approximate homomorphism, of the system, thus
giving up some detail. To use information theory is yet another way,
in which most details of the system are ignored and what remains is
essentially a picture of the "activity" of the variables and of the
' statistical linkages and causal connections between them. These
linkages will be explored in later sections of this paper.

Another feature which complex systems often display is a
hierarchical structure - a structure in which the whole consists of
interrelated subsystems, and in which the subsystems are themselves
hierarchical, down to the lowest level of elementary subsystem. By

the term hierarchical we mean to include, but not necessarily imply,

1

+1h 3 i At T + a M 1 4+ Gy
the case in which each subsystem has a "boss in the system. The

ubiquity of hieraréhicai'structures is discussed by Simon~"., For the
view of a system as composed of parts to be a useful view, the parts
must interact with each other in a more or less global way - that is,
in a way which is not highly dependent on the internal details of the
parts. The interactions in a communications system, in which the parts
are represented by blocks and the whole as a "block diagram”, is a
common example. In section 4.3 we will demonstrate that information
theory can be usefully applied to effect a conceptual breakdown of a
system into subsystems, and to measure the conétraints holding between
the subsystems as well as within each subsystem.

Many complex systems can be view¢d4as goal-gseeking; that is,
they act in an apparently purposive manner, interacting with their

environment so as to "get their way,"” i.e., so as to maintain certain



essential variables within aczeptable limite. If the envircnmernt
represents a real threat, sc that the purpcsive action requires actual
action on the part cf the system, then information theory is relevant
in several ways. First, there are certain gquantitative statements
which can be made about the cocrdinatiorn required between the environ-
ment and the system if the latter is to attain its goal; these will be
developed fully later, in the information theoretic analysis of
regulation. Second, if internal coordinaticn between parts of the
system is necessary to achieve the goal, this cocrdination is also
subject toc quantitative comstraints, of the same pature. Third, the
system must usually take in informaticn about the ervirormernt with
which it interacts, if it is to achieve the requisite coordinaticn, and
the rate at which this information can be taken in is governed by the
well-developed laws of information transfer through channels.

Complex systems commonly display another feature; their actions
are commonliy conditioned by their past history. This feature, which we
can refer to loosely as memory, means that the past has a demcnstrable
effect on the present, and this effezt can be studied with the toola of
information theory; ccordination between variabies dispiaced in time is
just as amenable to information theoreti: techniques as coordization
between simultaneously cbserved variablies., Mos* c¢ccmplex systems do not
have the property of ergodicity, and therefore many specialized theorems
of information theory do not apply; mevertheless, much can still be
said.

In short, information theory is useful in the study of complex

systems when one is willing to sacrifice the minute details involved
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and to look instead at the variables and their interrelations. The next
section will discuss two devices for doing just that. These are the
Diagram of Immediate Effects, suggested by Ashby, and an information

theory analog to it, the Diagram of Immediate Transmissions.

4.2. The Diagram of Immediate Effects and some information

theory analogs

Introduction

The Disgram of Immediate Effects (DIE) described by Ashby in

Introduction to Cybernetics is a useful device for displaying the

cause~effect relations between parts of a system, and in particular for
displaying independence of parts, feedback relations between parts, and
so on. The price paid for its extreme simplicity, however, includes
the following drawbacks:

(1) The DIE measures the linkage between two parts of a system
with only two values - either the two parts are causally
linked, or are not.

(2) To construct the DIE, one must in general either know the
mappings Jjoining them, or else be able to force the system
into every conceivable system state.

(3) The DIE is applicable only to state-determined systems.

The coarse~-grained character of the DIE means that its quantitative
information about relations between parts of a system is insufficient

for many purposes, and the requirements listed under (2) and (3) are
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impossible to meet in many cases of practical interest, e.g. in complex
biclogical systems.

The Diagram of Immediate Tramsmissions (DIT) described in this
section minimizes these problems; it msasures the cause-effect linkage
between parts to as fine a degree as desired, and it demands for its
construction only that the varisbles of the system be observeble as the
system follows its natural mode of activity. It is applicable to both
deterministic and nondeterministic systems.

One of the chief advantasges of the Transmission measures over
the Effect measures is that the former are better suited for networks in
which there are changing patterns of communication, as in networks
displaying "learning", "adaptation", and the like. This is because the
transmissions will in general change during the history of the network,
whereas the "effect” measures will not, being derivatives of the system's
mapping which is assumed fixed. The "effect" measures deal with what
communication possibilities are inkerent in tke network, while the
"transmission" measures deal with what actually happens.

We have investigated the DIE, the DIT, and several closely
related diagrams in detail and have reported the results elsewherelag
here only the major results of that investigation will be given. The
next part of this section deals with “he DIE, the following deals with
the DIT, and the last part offers comments on the usefulness ard

weaknesses of the diagrams.

4.2.,1 The Diagram of Immediate Effects (DIE)

This section defines the DIE and cthér related diagrams and

introduces several theorems about them. Although the DIE is cf in*erest
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in its own right, it is included here primarily as an introduction to
the DIT of the next section.

The DIE is applicable to a state-determined system s ={5{°1,22,
cees YM} in which each "part" -ii represents‘ a machine with input. We
denote by X; the set of allowed values for the variables X;.L_, X? 9 seo
comprising 5{-1 , and we let the superscripts indicate time. The mapping
fi maps the state of the system, S, into the next state of part Xi 5

fi:Xlxxax,..xXM ->Xi

The mapping for the whole system is fa' ; £ ¢+ 8 =< 8.

We will find it convenient to use the projection mapping

pry S — Xi which selects the ii component from a vector, or more

generally the mapping Pr S = Sa which selects the ordered n-tuple
a

of components corresponding to variables in S;. We will also use

pro g, S ~>8-5,. For example, witn 5 - {xl,xa,)%} end §_ = { xl,x3}

we have pr3(<2, 3, 5>) =5, prsa(<2, 3, 5>) = <2, 5>,

prs_sa(<2’ 39 5 >) = 3°

We say ii has an immediate effect on fj if there is a pair of

system-values s, and s for which prS—X-(Sa.) = prS-Xi(Sb) and pri(sa)#:
i

pry(sy), such that fj(sa) $ fj(sb); that is, if there are two system-
values different only in their fi-components, which lead to different
fj—va.lues at the next step.

It is convenient to use an arrow, as in “X‘i —>')_('j, as shorthand

1

for the phrase "has an immediate effect upon," and a canceled arrow, as

in i.i +> fj, for the contrary.
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We define the Matrix of ITmmediate Effectsz A= [ﬁij:!MgM as
follows:

1 if X, - X,
a, = : J

iJ 0 cotherwise.

The Diagram of Immediate Effects (DIE) is a pictorial representation of
¥ ¥ 1_=

A. Tt has an open and a closed form. For example, with {?iﬁie,xsk=s
and
1 1 Q‘—
A = 1 0 1
1 0 1

the clesed form is shown in Figure 15, and the open form, with arrow-
heads assumed but not drawn on the right end cf each line, is shown in
Figure 16. The DIE is an excellent device for displaying certain cause-~
effect relations between the variables im a system, giving as it does
an easily grasped overview of what parts affect which, what feedback
relations may be present, and sc on. The open form, while not as

simple as the closed form, has certain advantages, notably that it

may be iterated to display cause-effect "chains" as illustrated in
Figure 17. The DIE displays effects between individual variables in S.

More generally, a subsystem §a = { iél,faego oo,i‘am} C S has an immediate

effect on ancther subsystem-§£ = { Eil,igegcqo,isn‘} C S if there exists

]

a pair of system-values s, and sy for which PrS-Sa(Sc> PrSmSa(sd> and

A

prSa(sc) £ prsa(sd), such that prsb(f¢(sc;) = prsb(fr(sd)); i.e., if

there are two system-values different only in their Sg-components which
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3
Figure 1?.
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3 3
Figure 16.
| | | I
oos 2 2 2 2 see
3 3 3 <

'Figure 17.
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lead to different Sy-values. If S, ard Sb are not disjcirt, the clos

i

o

3
form DIE is not usable, but the cpen ferm is; for example, with
Sy = { “Xfl,ié} > §y = {Xz,’ié‘} , and A as before, the DIE is as shown in
Figure 18,

A convenient feature of the DIE is that when saveral variables
are grouped into subsystems, the DIE for the subsystems can be deduced
directly from the DIE for the individual variables.

Theorem IV.1

Let §a and Sp be subsystems of S. Then {“S_a — §b} <=

iaxi € S,X5 € 8y s.t. Fy —>Xjk .

Proof:

The direction < is obvious. To show =, suppose §é > §£

as evidenced by system-values 8, and sy which are identical except for
[§ome or all of] their §;=components and which are mapped by fj into

different ibmvalues, for some X’J in §5f If s, and sy differ in oniy one
component, the theorem is automatically satisfied. Suppose S and sy

Py

differ ir exactly two components, *kcse for Xal and i;zo Then

fj(sc) = fj(xal’ X 55 oo ) = Xy

0 ? -
fj(sd} = fj(xal’ Xl oo ) X, # X

where the dets indicate that the remaining components ef s, and sy are

e

identical. The theorem states that either ?;1 -> Xj

(or both); we will assume X1 4> XJ and X_, 4> Xj and obtain a

or Xa,2 —> Xj
contradiction.
Consider Se*

Sg = <x;l, Xo5s coo> o



2,3
Figure 18.
2
3
Figure 19.
2

Figure 20.
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Since fj(sc) = x; and X, 1@>Xﬁ, Tsise) = xp because s, ard s, differ

3
only in their fiwcomponent° Ard since fj(se) = x) asd X, —f?»isy
fj(sd) = x, because s_ and s4 differ only in their X,~compenent. Bat
fj(sd) = X;. The contradictior implies that either i;l —> i& cr

=
X, —> Xj {or both).

The theorem is true, then, if g, and sy differ it two components
only. Tke obvious extension of the foregoing, when S, and S4 differ in

arbitrarily mary components, shows that at least one variable in 5;

must have ar immediate effect on X,

[}

Q. E. D,
It follows from Theorem IV.l that 1€ some variables are grouped
i.e., considered as components of a new, compound variable, the LIE
for the new system can be deduced directly from the DIE for the old
system. For examplé, if the DIE for Ei = { ii, ié, ié% is as shown
in Figure 19, and if ii and i} are grouped to form XL = iﬁi::ii:;,
the DIE for §é = {'fh, fé}' is as shown in Figure 20.

The immediate-effect set of f&, denoted A(?})s is defined by
AX;) = ixj c5|% — xj}
In the DIE, it is the set to which Ki sends arrows. The immediate~

effect set of §;c§; denoted A(§;), is

A(°§a)=£fje§|§a -5}

It follows from theorem IV.l that

gy N
A(S) = %, e 5, A ).

It 5; and §£ are disjoint sets whose union is 5} they are independent

L

g o>
[}
e

if and only if §, 4> §, and § > 5, i.e., 1f A(S,)c§, ard A(§ ) §,.
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Xi may have a delayed effect on i} even if ii 1L>-is, for the
effect may be passed through a third variable or even a whole chain, as
itX; >X%, % = X, X =X, ..., X —> iﬁ. For this reason it

is useful to define the k-effect of f& on iﬁ; ii has a k-effect on ij,

symbolized iﬁ .J£4>§5, if there is a pair of system-values s, and sy
for which PrS-Xi(sa) = prS-Xi(Sb) and pr;(s,) # pri(sy), such that

-1 -1 -1 . .

fjfi_ (sg) # fjfﬁ (sy,), where fﬁ_ stands for k-1 interations of the
system's mapping. Thus ii __5_;-25 if variations in i& by themselves
can sometimes induce variations in 25, k steps later. The Matrix of
k-effects Ay = [aij ] is defined by
—— kdyMm

b4

r —

= 1 iffi..}_) Xy,

a, .
13y
0 otherwise,
The Diagram of k-effects, DKE, is a pictorial representation of Aj.
Definitions for the k-effect of S, on 8, §;._J£;.§£’ A (X)),
and Ak(§;) will be omitted since they are strictly analogous to the
earlier definitions.

Theorem IV.l holds if "k-effect" is everywhere substituted

for "immediate effect," and as before,
— = _ U _ o .
A(8g) =1, ¢ 5, Acl)

The operator m maps all positive real numbers to 1 and all
other real numbers to zero. Operating on a matrix, it creates a matrix
of zeroes and ones.

The fundamental relation between immediate effects and k-effects

follows.
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Theorem IV.2

plhe) = pla") for ail x 1,

That is, if i%.u—ii>§% then there must be a chain of exactly k

arrows in the DIE leading from.iﬁ to iﬁc

Proof:

e -

For k = 1, the theorem hclds. Let k = 2, and suppose figJ§H;>fs
ag evidenced by a pair of system-values Sg and sy satisfying the require-
ments, If £ (s,) = sy ard £ isp) = s, are identizal, then £3f (550 =

fjfa(sb) and f& mgﬁL;,ng contrary to our supposition; therefore s; # so.

The components of 1 and S, which differ correspond to a set of

variables §; CMA(ii)S

§c =i }"f& ‘ pra(sl) # 12 (52)}e

Now s; and sp differ only in their S :' «gomponents, and f. (sl) # fj(s2),

thus §, —» xjo By theorem IV.l there is an El in §c such toat Xx - xj,

and therefore there is an ii such that ii — ?& and i& —3 ise This

proves the theorem for k =
Suppose the thecrem is true for k = n - 1, so that there iz =

chain of n - 1 arrows from X; to each variable in Anm1<§%)° If

Xi _mEmg.is, there exist system-values gq and 8y differeing only in
their fﬁmcomponents and such that f«fﬁ“lfs Y o# £ fn -1 (spj. This can

only be the case if fﬁfl(sa) 4 l&bb>§ the components which differ

define a set §a as before:

ex

8q = { ER l Prl(f‘;jl(sa)} # pr&(frj:l(sbm} )

As before, §a must have an immediate effezt om iso Therefcre, there
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must be an ii in §ﬁ such that the DIE has a chain of n - 1 arrows from
Xi to X1 and also an arrow from Xx'to Xj.
By induction, then, the theorem is true for any k = 1.
Q. E. D.

"Theorem IV.2 has an obvious corollary.

Corollary IV.1l

A (X)) € ARE) = A(... AGAGAE))) ...)

That is, the k-effect set of ii is included in the set of variables
reached from ii on the DIE by following all the chains of k arrows.
In fact, if (nl, Doy eoes nm) is any partition of k,

Ma) < (a'la%2. ... .A"m)
and

Ak(ic'i) c A"1(aP2(...(A%m(X;))...)).

This fact leads to a simple procedure for estimating high-order Ak

matrices from lower-order ones. The procedure has been reported else-

wherelz.

The next section will develop the Diagram of Immediate Trans-
missions, which is strictly analogous to the DIE, and will compare the

two Diagrams as the development proceeds.

4.2.2. The Diagram of Immediate Transmissions (DIT)

The DIT is applicable to a system S = &fl, Xpy oo KM} ,
deterministic or not, in which each variable i& represents a "part."
We will use the same notation in this section as in the preceding, as-

far as possible.
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The DZE contains information about the system's mapping azd
shows which parts, acting alone, can affect which others. The DIT
contains information atcut the system's bekravior, as recorded in a
frequency table; since the behavior may depend or changing external
factors or, as in the case of a learxzirg or adapting gystem, on time,
the DIT will in general change as the behavior changes, and in this
sense it is a more dynamic characterization of the system than the DIE.
It shows which parts, acting alone, affect which others, and it shows
the magnitude of the effect on a continuous scale, so tha% one can see
which effects are strong and whick are weak., These advantages of the
DIT over the DIE are obtained, however, at the price of certain compii-
cations which do not arise in the DIE. These will be peinted out as
they arise in this section.

The immediate effect of i} on fﬁ is naturally associsated with
what happens to i& when i& varies and all the other parts do not; this
is the basis of the DIE and of the DIT as well. But while the DIE
gives the answer to the simple query, Does Eﬁ ever vary, or not?, the
DIT gives the answer to, How much of the variation in 25 can be attributed
to f&? In other words, how much of the variation in iﬁ is due to iﬁ
alone, on the average? We denote the measure of this quantity by

tij’ call it the immediate transmissicn from iﬁ o Xj, and define it by

tis = Ta vy (X @ X%).
i) SXil J

The prime is used to indicate that we are interested in the transmission
between X; at one moment and Xj at the following moment, i.e., as

shorthand for
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< T+l
ty; = 2 Prob(T) - Tyw gy (K ¢ % ).
T

Put operationally, tij is the result of the following observations and
calculations on § = {_il’ -)'('2 s eoey iM} . By observation one obtains
one or more protocols which list the successive system-ﬁalues taken by
s during s finite time span. Some particular set of values for all
variables except i& is chosen; that is, an element in the set PrS-Xi(S)
is selected, and the protocol is scanned for system-values matching
that element (in all but X;, of course). Whenever one is found, the
value of X; and the subsequent value of Xj are recorded, and eventually
a frequency tadle for (Xi,Xj) is thus constructed. The transmission in
that table is a measure of the effect of YX. on X. when the other variables
are constant at the selected value. The process is repeated for all
the other elements in prs_xi(s), and a weighted average of all the
resulting transmissions gives tij“ Thus tij is a measure of the effect

fi has on iﬁ when the effect of all other parts on Xj is blocked.,

As an example, we will calculate t13 from this short protocol

of § = {xl, %55 XB} .

time 1 2 3 L 5 6 7 8 9
X, 1 3 2 1 3 2 2 2 1
X5 3 1 3 1 1 3 3 1 1
X, 2 1 2 1 1 2 2 2 1
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Below are the fregquency tables for trne <¥,, X3 > <couples whkich cozur

orice or mere.

<XP}%> = <1, 1> <3, &> <1, 2>
: X4 XY
X ~Jd *J
1 2 i P 1 2
1 1 0 1 1 o 1 0 0
X, 1 2 ¢ 0 X |2 1 2 X, 12 1 0
3 0 2 L 3 O 0 3 D 0

Frequency tables for other <;x29:x3> combinations contain only zeroes
and bence have zero transmissicn, The tables shown have transmissions

cf 0.918, 0.311, and 0.000 bits, and thus

1}

t13 = § (0.918) + % (0,311) + é“ {9.000)

L]

O. 5‘000

When tij > 0 we say that Xy has an immediate transmission to ig; this
<

[

will be symbolized i& —> t —> XJ in gereral or by substituting the

numerical value for t, as by ii —> 0,500 —>» ?3 for the example.

The matrix T = [t&j:lMsM is the Matrix cf Immediate Transmissions,

and its pictorial representation is the Diagram of Immediate Transmissions

QDITZo The DIT is Jjust like the DIE exzept that with ea:xh arrow or
line is associated the numerical value of fthe transmigsion. The matrix

T and the DIT im beth forms are given below, for the example,

0.75 okl 5050
I = 0.16 0,06 0,16
0,00 G 0,00

The closed ferm is shown in Figure 21 and the cpen form in Figure £2.
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0.41
0.75 (T — [, i) 0.06
OIIG
0.50 0.16
3 K
Figure 21,
| 0.75 |
O"e
0.4l
2 006 |2
0.50
l 0.l16
3 3

Figure 22,
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The following theorem gives tre mes* f rdamertal relation

between the DIE and the LIT.

Theorem IV.3

If § = {)?is.iés coes Xy ¢ is state-determired, MT) < A,
or alternately, {fi -t -3 iak = i X: —> 3(% .
Proof:
Suppose i& +> fﬁ; then for every pair of gyg*em-values S, ard
5, differing oriy in their fAn@ompuaents, fils,) = fjisb)u This

implies that Hg o (Xi) = C ard thus that t . = 0,

“¥X3 ij
Q. E. T,

For a state-determined sys*em, <hen, the absense of an imm=iiate
effect of fﬁ on is forces the correspording immediate transmission tc be
zero, The presence of an immediate effect does not, of course, imply
that the immediate transmission must be positive.

Just as in the previous section, we can generalize the defiriticn
by allowing it to include transmissicns of subsystems on cther subsystems,
and also trarsmissions across more than cre time interval. We define

==

- i S +to & + 3
the k-transmission from £, to Sp as "5 Spok

2
o

ts [ad = 7 =] (S
ay.\d’b’k ""k.'a'

T

S
a Do

The k, like the prime used earlier, irdicates a time gap of k time

units or steps. We gay that §g has & k-trarsmission to E%»if

s —>t —55 §, or with ths

0

r

tS Sb,k > 0; this is symbolized az
a
numerical value in place of the t.

Theorem IV.3 can be strengthened sonmsiderably as follows.
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Theorem IV.L

Let §, and Sy, be subsystems of a state-determined system S.

Then {.S_a. — t __]§_>§b} @{S} -—k—>§b} .
The proof is identical in form to that for theorem IV.3 and will not be
given here.

Recall from the last section :

3%e 8, §efon § 2T} e {5 E>51.

The corresponding statement for k-transmissions is only half true, that
is:

Theorem IV.5

Let S and S be subsystems of S. Then

2% < F %. <& % K, 7.\ T Ltk §
(3% ¢ 5,, T e § sut. § — & 85 X =>4 sa->t2->sb§

and t, = t

2 1°

Proof:
k k
t, =t = Sy.) - Hq(Sy).
2 = %5 ,5,,k = Bg.g, (Sp) - Hsl b)
By using the identity H(X, ¥) = H(X) + Hy(Y) and by adding and sub-

tracting H (x k), we obtain
S—Xi 3

k k  k k
= + - -
% Hs-nséxj) foj‘,s-sa (8,-%3) - Hg(Xy)
k k k
+ S, - Xg + H X.,) - H X.).
Grouping the fifth and third, the first and last, and the second and

fourth terms,

5 .k . qk_yk
2 =ty xk t Tses, Ga¥yt Xyt TXIJ?,S-Sa(Sa : SpX3)
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In fact the theorem holds if subsystems §£

ard gs are substituted
throughout for ii and Sfj; this is also the case in the sta‘ement for

k-effects.

That the converse of theorem IV.5 fails can be shown by an

T

example. The frequency table below gives the freguencies ‘l\j,(XTg Y,

Xm'l, Y1) for a system § = {i- s ?}
<X°, ¥Y¥> =5"

<1,1> <1,2> <2,1> <2,2>

<1l,1> 1 0 g 1

" <1l,2> 0 1 1 0
<X't:+1’Yt*1 >

-~ S’t+l <2,1> 0 1 1 ¢

<2,2> 1 0 0 1

Calculations based on these frequercies give the following values:

t = 1 =t =t =1t

Ys,x = %,y Thkys Ttys T hux Tty Tfyx =t

v,y = O
From this example we see that one subsystem may have an immediate
transmission to another subsystem without there beirg any lower-order
transmissions at all.

The strongest statement it is possible to make regarding the

converse of theorem IV.5 is givern by the following theorem.

Theorem IV.6

Let §a and 5, be subsystems of a state-determined system

S. Then

{ga —t —£, §b} = {35(-;3 € gb s.t. ga, —>tk—>§j}o
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Proof':
Suppose that for every Xj in Sb’ tSa,Xj,k = 0., From the

definition of k-transmission, this implies that for every ij in Sb’
ky _ K
HS—Sa(Xj) HSa,S-Sa(Xj)

The term on the right is Hs(Xg), and it is zero since S is state-

determined; therefore, HS_Sa(xlg) = 0 for every ij in §b. The following

is an identity.

k
HS-Sa(S )

= [xj % sb(Hs-sa (XIS))] - Ts-sa(slg)
Thus,

Hs-sg(sg) =- Ts-so(sltf)
and since entropies and transmissions are always nonnegative,
HS_Sa(S%) = 0.

Consequently,

k K
t - sky - H
S,,8p,k = Hs-s, (5) = Bg, s-5, (Sp)

K ik
Hy_g, (5p) - Hs(Sp)

[}

0 - 0

O.

When tsa’sb’k > 0, therefore, the supposition that tSa,Xj,k = 0 for all
25 in §£ must be false.

Q. E. D.
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Even 1in a state-determined system, one canzct in general infer
from S, —» t "’ig that there is some ¥; in Sy such that X; —» 4 -—*fJ
The situation is somewhat different, then, for the DIE and the LIT.
There is a simple relation between the DIE of & sys*em and the DIE of a
related system formed by groupirg varisbles iwto subsystems; the
relation is more complex for the DIT.

Next, recall theorem IV.2, which said thet if ¥, —Ks X5

there must be a chain of k arrows in the DIE linking §£ to on The

corresponding statement for transmissions is not true; ¥; —» t —£» iﬁ
is possible when there is ro chair of arrows in the DIT from X, to fj,
One would expect that if i& were to have a k-transmissicn %o fﬁ, this
would have to come about by iﬁ havicg an immediate transmission to the
whole system S, § having an immediate transmission to itself, and S

having an immediate transmission to iﬁ, so that S would be a "charnel"

for the k-transmission. Surprisingly, this is not necessary; below is

a frequency table E(XT, i1+l, it+2) for a system S = { ijg, and
< XT, XT+1 >
<1l,1> <l,2> <2,1>» <2,2>
it+2 1 1 1 0 0
2 0 0 1 1

from this table one calculates *hat X has =0 immediate transmission to
itself, but that it does have a k-transmission tc itself (for k = 2)
of 1 bit.

(The table could represent the transition frequenciss for a

Markov chain, if zerc in the table were replaced Ly € and 1 were replaced
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by l-€ ; tX,X could then be made arbitrarily small, and zero in the
limit.)

For state-determined systems, however, S may be viewed as a
"channel" for the k-transmission.

Theorem IV.7

Let §; and 55 be subsystems of a state-determined system

5. 1£5§, —> ty —E»>5,, then 5, —> t; —> §, t> g, and
§—>t, =5, ty = tp, and § —>t3—>§b, t3 = to
Proof:

= = k

to tsa,sb,k Hs.sa(sb)'
Now ty = Hg_g (8')

=H, o (S') +H (sk)

S-S, S',5-85'"b

The last term is zero, since S is state-determined.

]

k
tq HS_Sa(S' > S§)

1
==

Next, t, =H, (8') = H(S')
2 S-S

H(S') + Hy, (ST)

H(S', slg)

H(sE) + Hgk (s')

ct
N
L

= HS_Sa(s{f) + T(S-S, : Sp) + HS%(S')

ZH

Ky -
s-s,(%p) = %o -



121

ky - k
Last, 3 = HS»S(Sb) H(Sb)

H(sE) + Hg, (sF)

H(s' , sk)

=t, =t

2 o °

Thus tl, t2, and t3 are all at least as large as t0°
Q. E. D.
In summary, the DIT is similar to the DIE in many ways when the
system diagrammed is state-determined, but otherwise its properties are
quite different and only weak generalizations may be made about it.
Even so, it is a useful device for displaying cause-effect relations

in a system of parts. The next section will discuss the strangths and

weaknesses of the DIE and DIT.

4.2.3. Comments on the DIE and DIT

- In the same way that a hammer is well suited to driving nails
while useless for tightening nuts, the DIE and DIT are tools which are
well suited to a particular class of problems and natufally poorly
suited to others. Both diagra@s have arisen from the question, which
parts of this system affect which others? But the emphases in the
two cases are slightly different, for ﬁhé DIE deals with which parts
might affect which others (within the constraints imposed by the system’s
mapping), whereas the DIT deals with which variables actually do affect
which others, and how much. Both display the answer in a pictorial way
which allows one to get a grasp of the system-aééa-whole; the DIT can

be drawn with the thickness of the arrows proportional to the corres-
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ponding transmissions, making the representation even more vivid. When
this is done with the example on page 11k the result is as shown in
Figure 23.

Moreover for a system whose behavior slowly changes, a movie-
style sequence of DIT's (one for each epoch in the system's history)
could represent gross features of the changes in a similarly vivid way.

The msjor drawback of the DIT is its inability to adequately
represent cause-effect relations in which the "effect” is caused by
several variables acting in concert, unless these variables are explicitly
grouped as components of a compound variable represented in the diagram.
For the variables may only have an effect via their participation in the
group {(as in
individually have effects may have none as a group, if some cancel the
effects of others. Indeed the latter phenomenon is the essense of
regulation, and it will be discussed more fully later.

There is another disadvantage of the DIT which is important>if
the diagram is based on observation of a real sjstem; the length of the
protocol required to minimize the effects of random sampling grows
[roughly] exponentially with tbe number of variables., For this reason
and others, T(Xi : X&) is in some ways a more practical measure of the
effect ii has on iﬁ than is TS-Xi(Xi : Xs); in the next section we will

explore that transmission and its uses.
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Figure 23.
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4.3. Decomposition of system constraints

Introduction

A dynamic system of M supervariables, observed over n time
intervals, provides values for Mn variables. The total constraint
over this set of variables cannot, in general, be decomposed into a
sum of constraints over proper subsets; this was shown in section 3.3.
The total constraint éan, however, be decomposed into constraints
holding within subsets and between these subsets, and various decompo-
sitions of this type will be discussed in this section.

After a general consideration of such decompositions, a method

of decomposing hierarchical systems will be proposed and illustrated.

4,3.1. Total constraint

In this section we will be considering the constraint over the
set of variables {X% | l<i<n, iﬁ e §’} representing a dynamic
system of M super-variables over a duration of n consecutive time
intervals. These variables correspond to the values which might appear

in a protocol of length n

time 1 2 3 n
X x| % ﬂ} X
7 . 1
5 | i

—_ . L/\,.._,L_..../‘J\/LA LL/\-

i
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We will denote the above set by Zn’ with additional identifying
subscripts, when necessary, preceeding the n:
Za,na{x:% |1 51 <0, Sc“je§’a},
The quantity of primary importance for a dynamic system

S = { ii, fé, 000 iﬁ-} is the total transmission in S over n time

intervals, T(En)o It is the grand transmission measuring the
constraint over all nM variables - M variables for each of the n time
intervals. T(Zn) is an upper bound for the magnitudes of all trans-
missions and interactions involving any or all of the variables. The
following sections in this chapter are concerned primarily with different
ways of decomposing this grand transmission into additive components,
by viewing the super-system first as composed of interacting super-
variables, next as a system with memory, and last as a group of inter-
acting subsystems.

Normally, T(Zn) increases without bound as n—»® , so we will
use the superscript L as before to denote the normalizing-and-limiting
operation:

h(z) =0 2 o(z))

n->o

when the limit exists. TI(X ) is the total transmission in the system

per unit time interval.

4,3.2, Two primary decompositions

By decomposition of T(Z,) we will mean expressing it as a

sum of other transmissions. The primary Decomposition Identity is as

follows:

N
T(S>E z T(Sk) + T(Sl H 32 T eoao SN)
k=1
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where S is any set of variables and is the union of the disjoint sub-

e LS

can be displayed in the manner shown below, which is meant to suggest

sets S k <N. The set £ _ for a super-system S = {il’§2’° . D,EM}

a sample protocol of S.

time: 1 2 3 oo n

= 1 2

i
)]
: ——\,_,/—\-—-"‘~—~*T:::g (——"”’\\-

o 1 n

There are two primary ways to "slice" this display: into M horizontal

%
|
2

strips representing the super-variables, and into n vertical strips
representing the system at the different times.
We denote the set representing a horizontal "slice",
Lx2,...x2l wy X The hori 1 partitioni ts th
s KT 000 s BY Ny one e horizontal partitioning suggests the

J7d J
following version of the Decomposition Idertity:

N
TE= sz-l T(xj,n} * T{Xl,ng){’&n: :XM,n>°
Consider first the terms TC%%,B)’ répresenting constraints

internal to the several super-variables. When we say a dynamic system
exhibits memery, we mean that thers is a constraint holding over the
variables displaced in time. For memory implies a constraint, an effect
of past system-values on the present value; a system without memory is

one for which knowledge of the past and present is of no use in predicting

the future. The constraint representing memory (cver a finite time

span) in the super-variable ib is, in tkis view, just T(X%:X?:oo,:xg)



or Tng,n)° The summation in the identity therefore repr=sents the
memory~-constraints in the M super-variables (over n time intervals).

The last term represents the coastraint over the set {f:xi, Xi,
I TR <xi“{, x.ﬁ, oo, xﬁ >}, It is the constraint, that is,
binding the super-variables tcgether {but cver only a finite time span).

This decomposition would be appropriate, fcr instance, in
studying the behavier of a married couple, with the "family" constraint
decomposed into one memory constraint for the husband, another for the
wife, and a term representing the bond between them.

Denoting, as before, the normalizing-and-limiting operation

"with a superscript L, we have

L lim 1 .
T (ﬁj) - n:i);; 3Wfs’n)

and N
TL(Z) = 2 TL(ﬂj) + T‘L(fl : 352 $ ..t iM)*‘
J=1

The last term is bounded by the constraint capacity of the super-
system S.

The previous decomposition was appropriate to the view of a
system as a collection of interacting parts, each with memory. The
next decomposition fits the view of a system as a number of parts
mutually constrained at each instant, with memory being attributed to
the system as a whole. Denoting, as before, the set {X&a X%, coey Xﬁ}

by S* and the set {<sl> , <S>, ..., <s“>} by <dp>, it is

n .
MZ)= Y Tty + (<S> ).

i=l

The terms in the summation are the instantaneous constraints

holding in each of the n time intervals, and the last term is the
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memory constraint for the compound super-variable <S> (note the
difference between S, a set of super-variables, and <S >, a super-
variable with components.) The term T(< J n >) might be called the
system memory constraint.

This decomposition-is appropriate for structures of the form
shown, for instance, in piano music, where the restriction to "harmonious
chords" implies an instantaneous constraint while the restrietion to
"melodious chord sequences" implies a system memory constraint.

Application of the normalizing~and-limiting operation gives

L lim 1 _, N
™(<d>) = nso0 0 T(<dp>)
and
n
{2 T(si)\
TL(Z) - 1im i=1 + TL/ <GX>)
n+ocd n / . °

The total constraint, per step, is the sum of the average instantaneous
constraint and the system memory constraint (per step).

The two primary decompositicns of T( Zn) are by no means the
only ones possible, and in the next section we turn to a hybrid type,
decomposition of a sjstem into subsystems with memory. First, however,
it should be emphasized that the memory constraint for a compound
variable may be less than, equal to, or greater than the sum of the
memory counstraints of the compcrents. For example, if S = {f, T}
and y’t= X~ we can have T{<Jn>) less than [T(fn) + T(’gn)] by
having X be cyclic:

time: cooy T 5 THL, TH2, TH3, THH, X+5, ...

X: 000’1’ 2 5 }_9 :.:: 3 l ’ 2 ’ e o O

Wi

Y: cooy & 1, 2
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T{<d,>) = n-1 bits
(%) = T{Y ) = n-1 bits
Or we can have T(<Ja>) greater than [T(%n) + T(ﬂjn)] by having X
take values 1 and 2 equiprobably and independently:
time: ..., T, X+L, TH2, T3, THY, T+5, ...

Xt ooy 1, 1, 2, 1, 2, y eee

w0
ol

000, , l , l ’ 2 ’ l ’ 2 ’ o 0 0
T(<d,>) =n bits
(k) = T(Yn) =0 bits.
If the supervariables are independent over the n time intervals,
i.e., if T(f'l,n :X‘Z,n $ eee :‘X'M,n) = 0, then the system memory
constraint exactly equals the sum of the individual memory constraints:
M
T(<Jn>) = jzl T(%j,n) = Tkzn)°

This follows immediately from corollary III.2, which gives

-

e 1
T(;(l’n:m:fM’n) =033 us)=o,
i=1

and from the decomposition identities for T(Z ).

4,3.3. Hierarchical structures

One of the most time-honored and successful approaches to the
study of complex systems has been to view them as composed of inter-
related subsystems, to study each subsystem individually, and then to
study the interrelation between them. Tkhe fact that this approach has
been so successful for so long attests to the ubiquity of systems
having structures amenable to the approach - structures in which the

subsystems can be understood more or less adeguately in isolation and in
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which the subsystems interact on a more or less global basis. Simon,
in his delightful paperll, deals at length with such systems and with
a reason for their prevalence; he uses the word "hierarchical,” as do
we, to mean not only the type of structure in which each subsystem has
a "boss," as ir the organization of a busitess firm, bul to include
any type of structure in which the system is deccmpecsable into inter-
related subsystems (and perhaps the subsystems into sub-subsystems,
and so on), as exemplified by a book which is compcsed of chapters,
which are in turn compcsed cf sections, which are divided into para-
graphs, and S0 on.

Simon points out that the subsystems of most physical and

hierarchies are most easily decomposed by noting "whe interacts with
whom.,” This difference is largely irrelevant, however, for we note that
in both cases, what allows a collection of parts to be reasonably
called a subsystem is that those parts exercise a stronger effect on
one another than on outsiders; that is, the cause-effect links or
communication ties are disproportionately strong within the subsystem.

The Decompcsition Identity is admirably suited to the decompo-
siticn of § into N subsystems §k, 1<k N:

N

Mz )= ) (%
k=1

The identity expresses the total ccustraint cover £ as the sum of the

. 3
I3 co0a0 o °

e K,

k.n

individual corstraints within the N gubsystems, plus the constraint

= T

holding between the subsystems {comsi

3 az bazic units); it thus

corresponds precisely to viewing S as a whole, ox the left, and as a



o
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collection of N interacting subsystems, on the right, Furthermore,
each term T(z'k,n) on the right may be decomposed by the same identity
{or the earlier ones ) into terms whizh correspend to viewing subsystem
§£ as composed of interacting parts for variabies, etc.). And so on.
When n = 1, the identity is not well suited to de-cmposition of
dynamic systems, for if one variable in a system has a direct effect on
another that effect will usually show up most strongly one time interval
later. On the other hand, the limitirg form of the above identity,
L X L, L T
T(Z)zz T!\Zk)'*'T(Sl:SZ:”,:SN),
k=1
while it represents the decomposition well, contains quarntities difficult
to estimate on the basis of experimental protoccls unless those proto-
cols are very long. For these reasons *the identity fcr n = 2,
N

NIp)=w Y MEp) AE L Ty ey ),

f

is often the most useful.

We will next suggest a practical methced for decomposing systems
assumed to be hierarchical and then illustrate it with an example.

When cne is confronted with a mass of data in the form of a
protocol for a system §, decomposing S into parts gi, Eé? coes §h in a
"reasonable" way is a formidable undertaking, especially if littie is
known about the variables. The DIT is sometimes useful for detecting
which variables strongly affect which others, i.e., for detecting a
natural decomposition of §, but a more generally useful measure is
T(Xi : Xj), the transmission between variable i& at one mcment and some

other variable at the naxt. Of zcurss the best measure of the inter-

Ft
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dependence of two super-variables is TL(ii : iﬁ), but estimation of
that number from a protocol leads to sampling problems unless the
protocol is very long; T(Xi : Xé) is more convenient statistically and
and also implies a direction - the effect of i& gg)iso

To illustrate how T(Xi : Xﬁ) can be used tc suggest a decompc-
sition of § into parts, we simulated on a computer a simple network of
one Markov source, one mapper, and three MWI's. We then obtained a
1000-step protocol of the system. The first fourteen steps of the

protocol, & not atypical segment, are shown below.

time: 0 1L 2 3 L4 5 6 7 8 9 10 1 12 13 14
S 1|1 |11 |22 |1 |12 |2 |1 1 2 2 1
X1 1133|322 |1 |1]2 ]2 1 1 2 2
X5 1|12 |2 |1 |r |22 ]2 |2 |1 1 2 2 2

Next, frequency tables were compiled and the transmissions T(Xi : Xﬁ)

were calculated. These were as follows:

T(X; xs) X1 X4 X3 ) o X5
Xy .12k .013 1,057  .131 073
X, 002 023 002 .118  .012
X3 .138 012 541 036  LOL7
Xy, .002 1405 002 007 LOL7
X5 .000 .182 002 2L .19k




If the parts i& are represented by (:) and arrows representing
transmissions are drawn in one at a time, starting with the largest
transmission T(X; : Xé}, the sequence shown in Figure 24 is obtained.
The sequence suggests that S can be naturally decomposed into
5.2 (B, %) a5 (%, 0, %) -

In fact this suggestion is well in line with the facts. The
TIE for the network is shown in Figure 25. Note the similarity
between the DIE and the ninth diagram of the sequence.

The mappings for the mapper and MWI's are as follows:

MWI, #1:
X
}&l 1 2 3
1,1 1 1 1
1,2 1 1 1
1,3 3 1 3
<I,X3~>
2,1 2 2 2
2,2 2 2 2
2,3 2 2 2 (x7)
MWI, #2:
X5
Mo 1 2
1,1 1 1
1,2 1 1
2,1 2 2
<Hh5> 2,2 1 2 (Xz')
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MWI, #3:
X3
M3 1 2 3
1 3 1 3
X 2 2 2 2
3 |2 2 3 (x3)
Mapper (with delay) #4:
%
a 1 2
1,1 2 1
1,2 2 2
2,1 2 1
2,2 2 2
3,1 1 1
< Xp,Xg2 352 1 1 (x)
MWI, #5:
X5
/s 1 2
1,1 1 2
1,2 2 1
2,1 1 2
¢ Xl,Xu)
2,2 2 1
3,1 1 1
3,2 1 1 (xg)




(c)

(g)

Figure 24.

(b)

(d)

(f)

(h)

©
OD— @ O

=0

ses and so on.
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Evidently a "good" decompcsition of §, other things being equal,
is one for which the number of parts is “reascnable" {perhaps approxi-
mately the square root of the rumber of variables) and the interpart
constraint is small ccmpared to the total - as small as pcssible, in
fact. The identity and the associated experimental values for the
decomposition S = §A U §£ are giver. below.

T 2,) =[T(Z,0) +T(Zy p)] +T(E, p: Iy o)

5.000 = [1.957 +2.722 ] + 0.h22,
The transmission between the subsystems is only about 8% of the total,
indicating that the choice of 55 and 5% is a reasconable one. By way of
contrast, if S is deccomposed into §é = { fi, i%-} and §a = {.fé, ih, EE} R
a decomposition which the T(X; : Xj) values imply is inappropriate, the
following values result:

(%) ET(ZG’Z) +T(Zd’2)] SO PR Z4,2)

[0.168 + 1.%6 ] + 2.97.

Here the transmission between subsystems accounts for 58% of the total,

5.101

evidence that g; and §a do not constitute good choices for subsystems.
To continue the analysis, §; can be decomposed two ways - into

individual memories plus intervariable constraint,
= { ) + 7f .
T(Z,0) [T@l,z) +T%g o) ]+ iR i %g,0)
1.957 = [0.12h +o0.541 ] + 1.292
or into instantanecus constraints plus system memory,

0(Z,0) = [T(s5) + 7(s5) ] + 1(<d, o>)

1.957 = [ 0.144 + 01447 + 1.669.
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Neither decomposition is very successful; the numbers indicate a strong

intervariable constraint and a strong system memory. The same is true

of Sb:
(=

[T(7(’2,2) * T(xu,e) * T<7¢5,2)]+ T(7(2,2"7éu,2’ }{5,2)
[0.023 + 0.007 + 0.194] + 2,498
N2y p) = [2(sg) + 2(s5) ] + T(<dp 2>)

2,722 = [0.201 + 0.201 ] + 2,320

b,2)

2.722

L}

The indications are that ga and §b are not readily decomposable by
these identities.
Analysis of \§a and §b in terms of their kinematic gra.phs6

bears out this conclusion. The kinematic graphs of -S—a , with
representing the state <X; =1, X3 = j>, are given in Figure 26. The
arrows from transient states are shown dotted. S, enters state <3,3>
only when the input contains a sequence of four or moré congecutive 1l's,
and it leaves < 3,3 > whenever the string of 1l's ends.

| The kinematic graph of §b9 with representing state
<i, j, k >, is shown in Figure 27, §b terds to follow the cycle

<1,2,1> —> <2,2,2>—> <2,2,1> —» <2,1,2> —> <1,2,2>

k. J

until Ea enters the rare state < 3,3 >, at which time §b soon "resets"

to <1,1,1> and waits for S, to change state; then S starts up again.
The decomposition identity suggested that °§a and §b were only

weakly interconnected, as is the case; 'gfa influences gb only through the

rare state <3,3>, and §b does not affect g’a at all, Other identities

suggested that the subsystems wculd be hard to break up. If the
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Input T

Figure 26,



X, = for2

@LD

1,2,

Figure 27.
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reagder dcoubts it, let him try:

This example illustrates a method which could well be vary
useful in the decomposition of complex systems, particularly in situa-
tions where the experimenter has very little idea as to which variables
can be naturally grouped. It is an allat60m¢ommon oczurrence in socience
for an experimenter to be faced with a highly complex system in which
data is easy to obtain but hard to "make sense of" because the experi-
menter does not know which variables are functionally "close" to which
others. Faced with the overwhelming complexity of a large system such
as a brain or an industrial society, the scientist may easily be defeated
by the data unless some sort of simplification is possible. In such a
case, the method butlined here may be a useful simplification since
it suggests a natural decomposition cf hierarchical systems.

The transmission T(Xi : Xj) used in the method is a simple
form of what we might call information transfer. The next section

will take up in more detail the topic of information transfer.

4.4, Information transfer

Introduction

Frequently complex systems contain both sources of infcrmaticn
and passive components which merely react to information. In this
section we will comment on the information transfer in such systems,
after first exploring information processes in purely stochastic and

then in purely deterministic systems. The topiec is important to the
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understanding of regulation in complex systems, since as we shall
indicate in the chapter on regulation, regulators often take the form of
deterministic subsystems accepting information and transforming it into

appropriate regulatory action.

4,4,1. Information in Markov processes

If the process {Xl, Xz, X3, ...} is a Markov chain in which

each variable Xk takes values from the finite set X = {xl, XDy eoey xm} s

it is natural to define the Markov super-variable X =< Xl, X2 s X3 3 eoe>

corresponding to the process. The transition probability matrix for X

e 2= 5]

1 = k = \ k-1 =
pij Prob{ X xi X Xj}

We deal here with discrete, ergodic Markov processes only.
From the definition of the Markov property,
+1 1 nt+l
p(x? lX,Xz, ceey XB) = p(X an) Vn=1,

it follows that

+
I{xl’ X2, o009 Xn(Xn l) = Hxn(x

This is well known, but to the author's knowledge it is not well known

n+l) Vn=1.

that for an ergodic process the two statements are actually equivalent.

Theorem IV.8

If the process &Xl, X2, ceoy Xn, M,} is ergodic, then
- the two statements below are equivalent.
+1 1 2 +1
(1) Vn z1, p&™ | x5 x5, oo, @) =™ | X,

i.e., the process is Markovian.

n+1)

\ n +1
(2) Vn =1, Hel y2 .,.,.,,x ) = Hyn(X
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That (1) implies (2) is well established elsewherelS; we wiil
show that (2) implies (1). The entropy equation implies the probability
equation when n = 1 for any ergodic process, Markovian or nct. For
any n 2 2, suppose that

ntly n+l
Byl 2, xn(X7 7)) = Eyn(xX7T),

ceog

By definition of conditional transmission, then,

Txn(<IXl, X2, ..., x0-ls . xetly _ g

which by corollary III.4 implies that
p(xt, ..., x0-1) x0*tl | xny = pxl L, x0-l | @) p(xntl | xn),

Multiplying by p(X") gives

]

1 +1 | L1 Y
(X7, ..o, X0) (x|, LX)

p(xl, ..., X0) p(xB*1 | xn)

+
P(Xls coey Xn) P(.Xn 1 l Xn)

(1

p(xa*l | x1, ., x0) = p(xn*l | xm),

Q. E. D.

For ergodic processes, then statement (2) can be used as the
definition of the Markov property.

The entropy of and constraint within a finite segment of an
ergodic Markov chain are proportional to its length, and they obey the
following equations:

H(XY, X2, ..., XP) = onl(xz) + p(xt : XP)

L.x®. ... X?) = nT(Xl : Xz)

T(X
Moreover any ergodic process satisfying either of the above for all
n z 1 is necessarily Markovian., These assertions are proved in the

following:
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Theorem IV.9

Ir {}ﬂy X2, coey Xi, .,.} is an ergodic process, then
the three statements below are all equivalent.
(1) The process is Markovian.

(2) ¥n>1, 5H(x, X2, ..., X®) = nHXl(XQ) + 7(xl : x?)

(3) V¥n>1, 7(x* : X2 : ... : XB) = (n-1)7(x} : X2).
Proof:
To show (1) = (2): The identity

Hxt, ¥, ..., X3) = H(XY) + Hx]_(X2) + X2(x3) + o

+H xn
X, %2, ..., ya-1(2%)

together with the Markov property imply that
H(xL, ..., XB) = H(x') + Ba (%) + ... + Hyn-1(XP)
1
= 5(x}) + (0-1) B (¥°)

= nHXI(Xz) + o(xt : XP)

for all n, so (1) = (2). To show (2) => (1), we assume (2) true
and show by induction on m that for all m > 1, the following assertion

follows:

iﬁxl LX) = B (X)) for all k, 1S ks m} .
’ oe s .

The assertion is automatic for m = 1. For m = 2, we actually
have only to show that the assertion holds for k = 2. The statement
(2) above, with n = 3 and with liberal use of the property of station-
arity, yields

B(xt, x2, x3) = mH(EY) + Hxl(Xe) + sz(x3).
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This, with the identity

Hxt, ¥2, ¥3) = wixty + HX]_(XE) +Hy X251x3)
X

establishes that
3% o i3
Bl x2(X7) = Bo(x7).
Thus the assertion is true form = 2,

Next, suppose it true for m - 1. To show it also true for m
requires only to prove it for k = m. Statement {2) and the property of
stationarity yield

+ : 2

HOC, ooy X00) = HOEL) + B (%) + oo+ Hyned (00) + By (2871,

The following is an identity:
+
B, oo, X 2 HOE) + EQ () + Ll 4 B eel(X0)

+H (xm*l),

X, ... X0
The first m terms on the right of both equations are equal, term by

term (since the assertion is true for m - 1}. Consequently,

Ba O ) = mal™).

We have just shown that if the assertion is true for m - 1, it is also
true for m. Consequently, by induction it is true for 2llm = 1.
Therefore, statement (2) implies that for allm = 1,

H (L) = B, (L)

xt,...,x0
which by theorem IV.8 establishes that the process is Markovian. Thus
(2) = (1),

To show (2) => (3) is simple. We assume, for any n > 1, that
(2) is true.

2 . : 2
- HEY, X2, ..., XR) = - n 1 () - Tt ¥P)
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Adding nH(X1) to both sides, we get
m(x) - KL, ..., ¥®) =0 [H0P) - Ba®) |- ot x?)
T(Xl c X2 i ...t XM= (n - 1) T(Xl : X2)
showing that (2) => (3). Reversing the process shows (3) =(2).
Consequently, (1) < (2) <> (3).
Q. E. D.
This theorem and the one before provide four equivalent defini-
tions for ergodic Markov processes. The quantifier "for all n > 1"
is essential, since non-Markovian processes can satisfy the criteria
for all n up to a finite N,. For example, if one writes down in order
the binary equivalents of the series {0,1,2,,,,,15,0,1,,“} ,
{ 0000 0001 0010 .... 1111 O000 ... } s
the resulting chain of O's and 1's, which is certainly not Markovian,
satigfies all the criteria for n < 4. In fact one cannot cgnclude from
any test based on observations of firnite length that a process is
Markovian, for one could never eliminate the possibility that the
process was ecyclic and only part of a cycle had been observed.
From the preceeding theorem it follows immediately that if
X is a Markov supervariable (and ergodic, the only case we have

considered), then
= 2
H'(X) = Hy ()
and the per-step memory constraint is
() = T(xt : X2).

If <8>» = <12i, ceosy iﬁ > is a Markov super-variable with

components, the components need not themselves be Markov super-variables.



Obviously they may be, for instance if the components are independent,

but the following transition metrix shows that they need not be.

<xk, x5 >

1,1 1,2 2,1 2,2

1,1 0 0 0 l

1,2 1 0 0 0

<x1]f+1,x}2‘+1> 2,1 0 1 0 )

2,2 0 0 1 0

Sample protocol:

time: 1 2 3 L 5 6 7 8
< X, 1 1 2 2 1 1 2 2
X2: 1l 2 1 2 1 2 1 2

Here <S> and )-(-; are Markovian but ?{I is not.

Whenever one or more components are not Markovian, however,
there must be a constraint between the components if the whole is to be
Markovian.,

Theorem IV.10

Let § = {fl, Xos ooos EM} and let <S > be Markovian,
Then {T(§) = O} %i\i i'j €S5S, 5(':.] is Markoviano}
Suppose T(S) = 0. By corollary III.2, T(s) = 0 for all i and
consequently the system memory constraint is the sum of the individual

memory constraints:

M
T(<Sl>: <> ... :<s%>) =7 T(X% : Xﬁ T oee. X2,
J=1
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If <S> is Markov,

T()Ej- x2 v 1 X9

N =

(n - 1) T(<st>:<s%>) =

J=1 !
A 1 2 X 1 2 n
(n - 1) jz= T(Xj : xj) = jz=l T(Xj B SIENRRE xj)

Therefore

n .

Solr@t:x®: ... x8) - (a-1) T(xE:X3) | =

J J J J

J=1
For every j, the quantity in brackets is nonegative. To see this, we
expand both parts by identities, and use the stationary property
freely:

20 ¢ XD = (a - DRCE) - [ By 0F) + K Xg(x3)

+ 00 X ]
T Xz,“.,Xn'l( )

(n - DT = ) = (o - VEED) - [ B (8) + B2(x3)
+ ... 7 HXn—l(Xn)]

By subtracting the second identity from the first, we obtain on the
right a sum of transmissions, for

-H X5y ¢ g o (xELy = (<xE, ..., XE-1>, xKTL),
1 xz,.,.,,,xk( ) Xk( ) ke s s )

A sum of nonnegative quantities is zero only if each term is zero;

consequently for every j < M,

(X x:? e 2 X9) = (0 - 1)1‘()%‘ : X2)

and each iﬁ is Markovian, by theorem IV.9.



4.4 2, Information in state-determined systems

The sequence of states in a state-determined system6 with

<st> = <X:iL’ X%a sooy .Xbiﬁ>9

{ <sl>, <25, ..., <si>, ... } ,
represents a special case of a Markov process, in which all the condi-
tional probabilities are either O or 1. The system's mapping, fv, maps
the set of states into itself; given the present state s° in g, the
probability that the next state will be fa_(s") is 1. This of course

means that H i (<si*1>) =0 for all i and consequently that

H(<Sl>, <s?

>y veey <SP>) = H(<ST>).

We assume the system to have a finite number of states, so that
H(< S >) is finite. The < and > marks are actually redundant in H
and T expressions and will be omitted henceforth. In the notation of

section 4.3,

H( ¥ ) = H(s!)

The uncertainty in a sequence of length n is precisely the uncertainty
as to the initial state of the sequence; The per~step entropy of the
sequence (in the limit) is consequently zero, which is to say that the
sequence carries no information (except information about the initial

state):

Bz ) = 1im_1g_§_£)_=o

nsc n ¢
The components iﬁ carry no information either, in the limit.
In fact any deterministic sequence has a per-step entropy of zero.
Any state-determined system (With.a finite number of s*ates)

6

will eventually fall into a cycle of behavior®, and the components,



150
if the state is compound, must then fall into cycles also. The behavior
of each component is then deterministic and predictable without reference
to any other component, so that when <S> is state-determined and

finite,

H( =)
HL(%‘-])
TL(Kl:ng eos :ﬂM) = 0.

Although the observation is somewhat frivolous and not very

0,

0 for all jJ < M,

meaningful, it could be pointed out that since T (7(1: XZ: %M) =0
always, any part of a state-determined system, when viewed as & channel
between two other parts, has a channel capacity of zero. The Markov
super-variable nggr'suggested by the state-sequence is not necessarily
ergodic nor even stationary; in fact the sequence of entropies H(Sl),
H(Sz), ceos H(Si), ... is monotonically decreasing, since

a(st, s') = H(s') + B (sT)

sl el .
H(sY, 8770) = H(STT) + H g (87)

and consequently

i+l) =

1 (e itl
= Hy3+41(S7) - Hgi(s™ )

H(s') - H(S
mHSiﬂ«_l(sl) z o.

Since the H(Si) are monotonically decreasing, so are the
(st : sitl), for
. .. o s
p(si ; si*tly = m(si*l) - HSi\Sl*l)

- n(si*?

.
%
Je
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The constraint in the sequence <S> ig the strongest mathematically

possible:

n .
(st 82 .., :80) = 3 m(si) . [H(sl) + Hsi(s2, $3, ..., sn)]

i=1l
n 9
= > H(s1),
i=2
The interactions Q(S1+l, Si+29 ceer STP) take a particularly

simple form and are alsc monotonically decreasing in magnitude:

Qs st*8, .., s = (g mstty.
To establish this, we let i = 0 for convenience and use inductior on n.
For n = 3,

Q(st, 2, s3)

]

’1‘83_{82 : 83) - 1(s2 : §3)

33} - ] 35 _ S3 + {a3
HSl( ) HSlSZ(S ;- H(8?) HSZMS )

In a state-determined system, the entropy of any S? conditional on Sk,
with k < n, is zero; given the state at any time k, one w¢an calculate
with no uncertainty what the state will be at any later time. There-
fore all the subscripted terms above are zero and

a(st, s2, s3) =-n(s3).
Now we suppose that Q(sl, s2, ..., sB) = (-1)BH(SB) or, more conveniently
for our purposes, that Q(Se, S3, veo, SEHLY = (-1)PH(s2*1), & mere
relabeling. From the iterative definition of Q,

1 .2 +1 2 +1 2 +1
Q(s*, s<, ..., s%) =Q1(s%, ..., s - Qlse, ..., 8B,

The subscripted term could be expanded into a sum of entropy terms, but
the subscript of each would contain Sl and consequently all wculd be

zero. By inspection, then Qsl(sz, ooy 891y = 0 ana
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1
a(s®, ..., 5T

- ms™ ]

n+l)

)n+l

(-1 H(S

Therefore, by induction we conclude that for all n = 3,
1l n n n
(ST, ...y 87) = (1) H(s7).

Q. E. D.

If <S> = <3€1, 22, cees iM> is a state-determined Markov
super-variable with components, the components need not themselves be

state-determined. The example in the last section, with protocol as

follows,
time: 1 2 3 N 5 6 7 8
X : 1 1 2 2 1 1 2 2
§ 1
izz 1 2 1 2 1 2 1 2

illustrates this; <S> and fz are state-determined but il is not.

In an analogy to theorem IV.10, however, we can prove that if
<S> is state-determined while some component X is not, then there
must be a constraint between the components which "acecounts" for the
fact.

Theorem IV.1ll

let S = {fl’ i—fz, coes fﬁ} and let <S > be state-~

determined. Then
{T(-S_) = 0} = iV fj €3, fJ' is state-determined}
Proof:
If <55 is state determined, then Hsi(si+l) =0 for all i >1.
Consequently for all i =1,

L +,
g(si*y - st ;s - 0.
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It was shown earlier that when T(S} = 0, the system memory cornstraint
equals the sum of the memory constraints for the individual variables.

Thus for all i =2 1,

M .
sty - > ot X
5= J J

It was also shown, in corollary III.2, that T{S) = O implies T(Si) =0

for all i =2 1. This in turn implies that

. M
aist™ = 3 it
i=1

Therefore we conclude that for all i &= 1

3
M
P £ RN SR £ R B
z [H\Xj ) - T(X3 : X3 )]-o

J=1
M
i+l
h3 H s (x37°) = 0.
=1 %3

This sum of non-negative quantities is zero if and only if for every
J €M, and for all i = 1,

i+ly -
HX; (XJ ) 0,

that is, if and only if each i5 is state-determined.
Q. E. D.
Having considered Markov processes and state-determined systems,
we turn in the following section to systems which are part random and
part deterministic: systems involving both Markov sources and finite

state machines.

4.4,3, Information transfer through finite-state machines

Any arbitrarily complex netwerk involving finite-state machines

(machines-withninput, mappers, and automata) and Markov sources may
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be viewed as a single Moore automaton driven by a single Markov source,
both the state of the source and the state of the automaton having,

in general, several components (see Figure 28). Although it is not
always advantageous to view a network this way, the fact that it is
possible makes it evident that we should urderstand the information
transfer in this paradigm case before attempting more complex cases.
The understanding of this simple case is also essential to the under-
standing of later sections on regulation.

The fundamental information quantity associated with any
finite-state machine is its channel capacity. The capacity of a
mapper is log M, where M is the number of distinct values in the range
of the mapping. The channel capacity of a MWI is log W,, with W, as
defined by Shannon5° And section 3.6 of this report has provided a
way to calculate the channel capacity of an automaton. That gsection
also provided a procedure for constructing a source which maximizes
TL(f : Y), and therefore also HL(?), at the capacity.

It is interesting and useful to note that if the output (i.e.,
state) sequence of a machine-with-input has the highest possible
limit-entropy (or just "entropy", for this discussion), then the
sequence is a Markov chain. Thus if the output is not Markov, one
may be sure that the MWI is not operating at capacity. 1In the case
of an information-preserving MWI (a MWI for which one can deduce, by
observing any allowable output sequence, exactly which input sequence
caused it) this is almost obvious, since the input must be zero-order
Markov to realize capacity in that case. That the output must be

Markov in the more general case follows from the fact that if a



Markov
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Figure 28.
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distribution P(z" l zt, 22, ..., Z81) is to maximize the output entropy,

it must make all allowable state sequences of length N (as N goes to
infinity) equally likely; that fact actually specifies the distribution,
which Shannon has shcwn is Markov5, From this point of view, a MWI
operating at capacity is a device for transforming an input which is
not Markovian (in general) into an output which ig,

‘We will consider now the problem of finding how much information
the output sequence carries when driven by a Markov source of known
characteristics. We assume that we are given a state-transition matrix
P= [:Pij] for a Markov source, agdvmappings f, and g, for the
MWI and mapper;

for X x Wy —> W,
8: Wo -—> Y.
The situation is represented in Figure 29.

If the input to a MWI is Markov, the state-transition sequence
is only Markov under exceptional conditions, and information is
usually lost in the MWI (that is, one cannot usually deduce what the
input sequence was from the state sequence alone). Our job of finding
the output entropy is considerably simplified if we break the MWI into
two parts - a new MWI which does not lose information, and a mapper
which does, as suggested in Figure 30. The new MWI is constructed so
that for every Zj in Z, f maps X X Z3 one-to-one onto Z, and g 1is
constructed so that the sequence W, is the same as with the original
MWI. This amounts to the introduction of extra states in the MWI, so

as to make Z a noiseless coding of f, and the subsequent elimination of

the extra states by an information-losing mapping. For example, if



o
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Y (Output)

Original

MWI

Figure 30,

—Y—> {Output)

157



f, is given as

wO
£o 1 2 3
1 1 2 L
X 2 3 2 b
3 2 1 L

158

with the multiple entries (which make f, information-losing) underlined,

we could construct f and g; as follows:

o

£ 1 2 3 L 6

1 1 2 L 3 3

X 2 3 5 6 2 2

3 2 1 7 1 1 Wy

Wo

g1 | 1 2 3 b 6

| 1 2 3 i n
Z

When this done, 7 is a second-order Markov process,
pzi™ | 2t ..., 2t 2t =@ | 2P ) vizg,

since given gi-1

and Z, one can deduce Xi'l, and the further uncer-

tainty sbout Zi*l is exactly the further uncertainty about X*. To find

the output entropy, then, we need only to consider how mapping a
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second-order Markov process by an informatiorn-losing mapping, (gogl),

changes the entropy. By a change of variables,
R

the problem is simplified still further, since if 7 is second-order
Markov, U is [firstworder] Markov.

Thus by successive steps we can reduce the original problem to
the problem of finding the output entropy which results when a Markov

input sequence X is mapped by a convergent mapping M into a non-

Markov output sequence Y.
Markov X Y 3 non~Markov
input S output

The exact solution to this problem is not known, but for ergodic

chains an approximate answer can be obtained from the inequalities
Hel 2 a(Y) < H(Y) s HA 2 a (")
’ Y ’ LK IR 3 Y 9 , 000’ Y

in which the outside quantities converge monotonically to HX(Y) as n
goes to infinitylh°

The fact that a finite-state machine with Markov input usually
has a non-Markov output does not in any way imply that information is
necessarily lost. Indeed, it is possible to have an arbitrarily long
chain of finite-state machines, for example MWI's (see Figure 31),
and as long as all of them are information-preserving, HL(?k) will

equal HL(T) even though Yﬁ will be (n + 1)-order Markov in general.

An information-preserving MWI can be viewed as a coding device which
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Markov X f Y Y2 fn n
Source '

Y

Figure 31,



161

encodes the input sejuence intc an ocutput sequence in such a way that
the span of intersymbol constrsirts is lengthened.

In fact, most finite-state machines have a tendency to increase
the span of intersymbol constrairts as they "transform" a sequence
from input to output. By this is meant that if one must *ake n
sequential symbols into account to get a reasonably gcod approximation

for the input entropy,

Hyi+1 A1)
3. .29099

- -1l <€ <£LL 1
H (X)

then one must usually take more than n symbols into account to get an
equally gocd approximation for output entropy. Finite-state machines
tend to "spread out" the information, to put it loosely but pictu-
resquely. This is, of course, only a tendency and not a law, the
notable exception being when the input is matched to a MWI so as to
realize the channel capacity; in that case quite the opposite takes
place, for the output ends up Markov althcugh the input seldom is.

In the light of Birch's resultslh, and in view of the fact
that when a Markov sequence is mapped by a convergent mapping the result
is almost never a Markov sequence, it is rather surprising that a
mapper may sometimes reduce the span of intersymbol constraints just as
a MWI can. The example of section 3.6 shows this clearly; there the
MWI part of the automaton transformed a ncn-Markov input sequence into
a second-order Markov state sequence, and the mapper transformed that

further into a [firstmorder] Markov output sequence.
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L.4.4, Information transfer in networks of finite-state machines

The fact that the span of intersymbol constraints tends to
increase as & message is passed through one or more finite-state
maechines greatly complicates the analysis of information transfer in
complex networks of such machines, unless the network is viewed as a
single automaton. One might think that the situation would become
completely unmanageable in networks with feedback, for example the
classic configuration shown in Figure 32. 1In this network, the input
sequence is combined, by way of the mappings, with various vestiges of
its own past; one would expect that the span of intersymbol constraints
in the output sequence would be immense. In fact, however, if the MWI
denoted by f, is operating at its own capacity (or close to it), the
output sequence is Markov (or nearly so). We shall have more to say on
this topic in later sections on regulation, and here it will suffice to
point out that when an input sequence is "processed" by a network of
finite state machines, what results need not necessarily have a larger
span of constraints than the input.

We can deduce several inequalities relating the input, state,
and output entropies for an automaton (see Figure 33).

The inequalities all derive from various decompositions of
H( = n); for one,

HOE ) = B, %2, ..., xR, 2, 28, L, 2B v Y, LT

1
HXY, ..., XP) +H 1 ozt ..., ZR)
X ’ °..’ X

1 n
+
}{xl, cocy Xn, Zl’ coey Zn(Y, o-o,Y).
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Input X Y Output )
Sequence = f fa —% " Sequence
f3
Figure 32.
X z Y
Source ‘ f g —>
Automaton

Figure 33,
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If Xl, soe) x? and Zl are known, there is no.uncertainty about

Zl, cees 7. And if Zl, coey z® are known there is no uncertainty

about Yl, coey Y°. Consequently

H(E ) = B, ..., X%) + Bl (2.

cees
Another expansion of H( £ ) is

1 n 1 n
H(Zn)=H(Z, ..,,z)+Hzl, zn(x’ ceey XB)

oeocy

+H ﬁ e a e Yn o
7l ..., 2B, X%, ..,,xn( s eees 1)

The last term is zero as stated before. Putting the two expansions

for H( £ ;) together, we obtain
1 n 1 n 1
H(Z veoy & = H(X eeey X + Z
( ’ ) ) ( ’ s ) Hxl,...,Xn( )

-H, Zn(xl, S R

Z ’000,
The negative term is the uncertainty about the input sequence which
remains after one observes the state sequence. Dropping it gives
1 l)

H(Z

n 1 n
, eees Z7) < H(EXT, ....,x)+HXl n(Z

’ OC.’X
or, a less strict inequality,

n(z*

, ve., ZB) = H(XY, ..., X®) + H(ZY).
Of course since H(Zl, veey 2B, Yl, ceey YB) = H(Zl, ceey 2P,
uzh, ..., 2%, v, ..., ) < HEXY, ..., X®) + H(ZH).
In the limit, as n —» oo ,
(X)) » HN(TZ,¥ ) = EXZ) = ®().
The entropy of a sequence, as it is transformed to sﬁate-sequence and
output-sequendé, can only fall; if one is more uhcértain as to the

output than the input (for a finite sequence) this surplus uncertainty

is only due to uncertainty about the initial state of the network,
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and this finite uncertainty is relatively unimportant in the limit. In
other wo;'ds, finite state machines caanot generate information; they
can only transform it or lose it.

Generalizing from the autcmaten to a network of interccornnected
finite state machines, this has the follcwing consequences:

Theorem IV.1l2

Let §x = {fls fa, ooey Q‘Xin} be a set of supervariables
which are inputs to & network of finite state machines, and let
the state and output supervariables for the machines in that
network comstitute the set §, = i Vis Vo, ooy Vh.}o Then for
anyn =z 1,

1 n 1 §1) 'l
(a) H(Sy, cocs Sy) = H(Sy, ooy Sy) Hs:lcg S?{».{sv)

coo0 g

had H ]<Sl o a0 0 Sn)o
S, ..., gRYH T X
1 1
() H(ST, ..., S5) < H(SX, ..., S%) + H(S}).
(c) H(3y) < B (Sy)-

The proof is a trivial extension cf the foregoing argument. The
theorem has some immediate consequences. For one, if §j is any subset
of §,, then H(S%:, coes Sg) = H(S%g eoos S} and HL(gj) < HL(gv), so
the entropy of any subset of the machine's supervariables is bounded
by the smﬁe quantities as the whole., Thkis in turn implies that the
limit-transmission between any k disjcint subsets of §v satisfies the
inequality

L= 3 =y N b
T'(Sy1 ¢ Syp ¢ eoe : Syt = (k-1) H'L(Sx)o

ILimit-interactions are also bounded; all n-th order interactions ({those
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with N variables in the argument) are bounded by + QN_QHL(§Q). There
are, of course, analogous limits for the non-limit quantities.

Through the preceeding inequalities, the incoming entropy limits
all information quantities relevant to the study of the network. We
have in the theorem another verification that ir a network of state-
determined machines, with no information sources pumping in entropy,
all limit-entropies, limit-transmissions, and limit-interactions are
zZero.

Notice that the theorem covers the nonergodic case (in state-
ments (a) and (b)) as well as the ergodic.

The transmission between two complementary parts (whose union
is S,) is bounded by HL(§'in)o This fact will be important later when
we consider networks decomposable into a regulator and a regulated
part; the transmission between these parts is a crucial quantity.

10

An application of the cut set theorem of Elias et al™ leads

to a possibly smaller upper bound for the entropy of any subset §£ of
§§. Suppose that a network of finite state machines and information
sources (not necessarily Markov) is specified by giving all the mappings,
all the interconnections between the parts, and the entropies of all
sources. The channel capacities of all the finite state machines can be
found, and a graph of the type shown in Figure 34 can be drawn. The
graph is essentially a diagram of immediate effects, with the addition
of the sources iﬁ and arrows showing which of the Vﬁ in 5} they affect.
Each line leaving a V} is labeled with the channel capacity of the

associated machine, and each line leaving an iﬁ is labeled with the

source entropy. We assume for the time being that the graph is connected.



V2 Vs X7
| 2
_ Cut
2 \
Va V5 > V6

Figure 3L4.
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A cut set on this graph is a set of arrows such that if all
arrows were deleted, the graph would fall into two or more unconnected

parts. A simple cut set is a cut set such that if any arrow is removed,

what remains is not a cut set. For example, the cut shown by a dotted
line on Figure 34 prescribes the simple cut set A:

A={1--—>u,l+—>3,5->2,3——>5,3->6}.

With each set §k c §§ there is associated a family of simple
cut sets separating §¥ from §k; the value of each simple cut set in
the §k family is the sum of the numbers on arrows crossing the cut
in the direction of §k. It §£ = {,Vh’§5} the set A above is in the
§k family, and its value is b + 2 + 2 = 8,

By slightly reinterpreting the cut set theorem, we conclude
that the channel capacity from §¥ to §£ canrict exceed the minimum
value among all simple cut sets in the §k family. With §k = i Vﬁ, VS}
the minimum value is 5, from the cut set B:

B={O »>1,2->3,4 3,35, 5-’6}-

It follows that the limit-entropy of any variable or set of

variables cannct exceed the minimum value among all simple cut sets

separating ibfrom._%; for the example HL(§k) < 5.

We assumed above that the graph was connected. If it is not
connected the same results hold; we need only redefine a cut set as a
set of arrows such that their deletion separates the graph into more
disconnected subgraphs than originally existed, and so on. If the
original graph is not connected, and if we choose two variables in

separate parts, it is plausible to conjecture that the transmission

between them must be zero. This is indeed the case if the source



169
driving the one part is independent of the source driving the other.
For with the prototype graph of Figure 35, we have HL(il, Vi} = Hliﬁi),
B(%, Vo) = B(X,), and HA(Xy, ¥y, %,, V) = (%, %,). Consequently
{TL(fl : X)) = o}:;&TLRxD > $h, V) = o}

and by corollary III.2, this implies Tl(ii 2 Vé) = 0,

Moreover it is reasonable to expect that if there is no chain

of arrows leading either from ?i to 74 or from V

J J
graph, then TL(VA : V}) = 0. But plausible or not, this conjecture

to Vi in a connected

is false, and to see that one need only consider the graph of Figure 36,
in which Vi and Vé are identical machines subject to the same input:
?71 and ’\72, being identical, behave identically, and TL(Vl s V.Y = H(Vl)o
We shall have more to say later about this important situation, with
regard to regulation; for the moment it serves to illustrate the fact
that there may be high transmission between two parts which have no
direct effect on another via mappings or even via mediating variables.
With this background on information transfer in networks,

we turn now to the subjects of regulation and of information transfer

in regulatory networks.



X, > Vi
X2 > Ve
Figure 35.

vi
X
Va

Figure 36.
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V. REGULATION

Introduction

The preceeding chapters have been concerned with the relevance
of information theory to complex systems in general; in this chapter
we specialize to those systems in which one part is trying to regulate
another part. Section 5.1 contains general remarks on regulation, and
shows in a qualitative way the importance of information to successful
regulation. Section 5.2 quantifies and proves more rigorously the
results of the preceeding section, and section 5.3 provides an
information analysis of three basic regulatory schemes. The paper is

concluded with some brief, general remarks on regulation in section 5.k.

5e¢l. Information requirements for regulation

Up to this point; we have mentioned the topic of regulation
only in passing; we have given several results showing how the methods
of information theory are useful for the understanding of complex
systems, without specifying any particular type of system. We will
now turn attention specifically to complex systems in which regulation
is involved - where one part of the system can be thought of as
attempting to regulate some other part. By this we will mean that
the regulator, which we will denote for brevity by R, and the part of
the system being regulated against, X, jointly determine an outcome, z,

and that the goal of the regulator is to force the outcome (or out-
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comes, if the process is an ongoing one) to be favorable to R, by
some [pre-estdblished] criterion. The regulator tries to get its own
way, in other words, in an outcome in which it is only one of the
determining factors. The situation is represented in Figure 37.

We will impose few constraints on this very general formulation,
leaving specialization for later. In particular we will leave open
the questions of what sort of machinery is in the boxes marked X and
R in the diagram above, and of what factors affect X and R, as
indicated by the entrant arrows. We will also leave open the question
of whether X is passilve (as in the case of an automobile being
regulated by a human pilot) or antagonistic to R (as in a game-
playing situation in which X is trying to regulate R, Jjust as R is
trying to regulate X). The only constraints we will impose are as
follows:

l. R, X, and Z are variables taking values from the sets

R S_rl, Tny; ecoy rm} s X = ixl, Xpy eeey xn} , and

Z {zl, Zpy eeey zp} respectively.,

2. The system operates on a discrete time basis.
3. The outcome is determined by R and X through a mapping f,.
That is,
fz : XxR —> 2,
Seen in this general formulation, regulation is a pervasive feature
of everyday life, ranging from simple acts such as taking an aspirin

to ward off a cold to highly complex phenomena such as government

regulation of interstate commerce. With several examples we will



| Controlled
Part, X

\

Reguiator
R

Determiner of

/ Outcome, Z

————3> (Qutcome)

Figure 37.



174
next illustrate different forms regulation can take.

One basic type of regulation is essentially an attempt on R's
part to destroy X's ability to affect Z, by cutting off the effect-
path from X to Z - to destroy the channel from X to Z, as we might
put i1t. This type of regulation is usually a single-occurrence
phenomenon, in which R takes one action to destroy the channel and
thereafter need take no further action. The installation of stop
signs at a busy intersection to minimize the probability of accidents
there, and the deposit of a dime in a parking meter to regulate
against ticket-issuing policemen, are examples. Examples of single-
occurrence regulation in which the goal is preservation of constancy
are: (1) assuring temperature constancy of an object by dropping it
in the bottom of the ocean, (2) assuring constancy of room temperature
by installing an automatic air conditioner, and (3) stabilizing the
political climate in a totalitarian regime by imposing a news black-
out on the press and radio. All of these examples illustrate how R
can regulate against unwanted disturbances by incapacitating the
mechanisms by which they would otherwise affect the outcome.

Regulation of quite a different type, and a type more interesting
for this study, takes place when R cannot block the channel from X
to Z but can only attempt to counteract the effect of X by appropriate
counteraction of its own. This type of regulation is usually more
dynamic than the type just mentioned. The goal of R can take the
form of maximizing a probability, as when a doctor attempts to
maximize the probability of "Patient Lives" when regulating against

diseases, or when a fencer tries to maximize the probability of
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"Avoids Being Hit" when regulating agsinst his opponent. The goal

can also take the form of preservation of constancy, as in (1) a
thermostat maintaining constant room temperature despite changing
weather, etc., (2) the driver of an automobile maintaining a comstant
speed despite hills, winds, and the like, and (3) in an open society,
a government countering hostile propaganda with propaganda of its own,
to preserve domestic tranquility.

The distinction drawn here between single-occurrence regulation
and dynamic regulation, while useful, is somewhat artificial and
arbitrary. For if a regulator takes a sequence of actions, the
sequence may be viewed as many acticns in an ongoing, dynamic process,
or on the other hand as one choice of strategy or one trajectory. The
distinction between the goals of maximizing a probability or preserving
constancy is also arbitrary; nevertheless it is useful,

About the case of single-occurrence regulation there is not
much to be said other than that if R selects one action out of a set
of possible actions, and if that action is appropriate (i.e., is
successful) while the others are not, then R needs information to
make the selection. If a regulator selects eppropriately to a degree
better than chance, it must do so on the basis of information about
which choice is appropriate. To select one action from a set of N
possible actions, when all are equally attractive, requires log
N bits of information.

If the selection is recurrent, so that the concepts of informa-
tion theory become meaningful, much more can be said. We will deal

henceforth with this class of "dynamic" regulators, which take on
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values as steps in a continuing process. Some regulators of this type
deserve only brief mention; these are the regulators which take
several actions (or values) but do so in an autonomous, deterministic
way, such as the traffic lights which regulate traffic flow by their
repeated cycles of red and green., We will be concerned, on the other
hand, with regulators which must take in information and act
appropriately on it in order to satisfy their goal criteria. Among
situations which we normally regard as involving regulation, this
situation is by far the predominant one.

We characterize the regulatory situation, then, as one in
which to achieve its goal the regulator must (1) take in information
by sensing some variables outside itself, (2) select from its
repertoire of possible actions the one which is appropriate for
attaining the goal, and (3) take that action. The process of
regulation breaks up naturally into these three components, and the
quality of regulation is governed by all three (of which we shall
have more to say quantitatively later).

Information plays an important role in all of these steps; this
is clear in the example of the fencer. To protect himself from his
opponent, he must (1) take in visual information about his opponent's
actions, (2) call on his knowledge and past training to select
appropriate countermoves, and (3) perform the necessary maneuvers,
which serve as input information for the opponent. Clearly the
fencer's regulatory ability is dependent on all three ; if his input
channel capacity is impaired (by dim lighting, poor eyesight, etc.),

or if his selection is impaired (by lack of training, or drug-induced
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befuddlement), or if his performance of the selected maneuvers is
impaired (by fatigue or physical weakness), he will be no match for
an opponent not so disabled.,

Similarly in the example of an automobile driver; whem rain or
fog cuts down the necessary input information, or when selection is
impaired by fatigue, or when the capability for maneuvers is reduced
by ice on the highways, the instinctive reaction is to slow down the
vehicle in recognition of the fact that one's ability to regulate
effectively is reduced.

The main factors opposing successful regulation, then, can be
characterized as

(1) ignorance, or lack of input chammel capacity,

(2) 1ack of insight, or lack of "computational” channel
capacity transforming input information into
appropriate outputs,

(3) impotence; or inability to influence the outcome
successfully due to a lack of optionz, i.e. lack of
output channel capacity.

In the next section we will investigate regulatiom in greater
depth and attempt to quantify the qualitative assertion that infor-

mation is of primary importance in any aralysis of regulation.
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5.2. Quantitative analysis of regulation

5.2.1. Regulation when the goal is to maximize a probability

We consider in this section and the next a mapping le : X x R—>
Z, and a continuing process (either finite or infinite in length) in
which X and R take values at time * and le determines the outcome

at time t. For example, le might be as follows:

X
f2, 1 2 3 L
1| 1 2 3 1
R e 5 1 2 L
313 5 1 3 (2y)

Suppose that R's goal is to force the outcome to be "1". We
can simplify the problem facing R by mapping Zl into Z by the rule:
Z=11f Z, is an outcome acceptable to R, Z = O otherwise. This

gives the following mapping f, : X x R > 2.

X
£, 1 2 3 4
1 1 o 0 1
R 2 0 1 0 0
3 o} 0 1 0 (2)

We will assume in this section that the distribution of X's choices
is fixed and independent of R; that is, we assume that N(X) or P(X)

is given. Under this assumption, what can be said about R's ability
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to force a desirable outcome? For concreteness, suppose X takes
its four values equiprobably; then R can force a "1" half the time by
perpetually taking the value R = 1, In fact if R chooses values
independently of X, so that T(X : R) = 0, it is easy to show that

this is the best R can do. To show this, we define the following:

P =Prob {2 =13}
Py = Prob {2 = 1} under the condition { E' = r, for all v}
J o i
P¥ = max Pi }
i=1
r¥ = the numerically lowest value in the

set {r’k ! Pk Ly P*} .
The definition of r* is a bit peculiar in order to single out only

one of the set of "best" values.

Theorem V., 1

If f, : XX R->Z where Z = 1 implies an ocutcome
favorable to R and Z = O implies an outcome not favorable,

and if P(X) is fixed and T(X : R) = 0, then the expectation of

a favorable outcome cannot exceed P*,

E P(xj,,ri)

< Xy,ry> € f;1 (1)

<xy,Ty> € f;l (1)

Proof:

P
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m

> P(ry) * Py
i=1

m
ZE P(ri) e P < P
i=1

A

Equalities are established if P(r¥) = 1.
Q. E. D,

The theorem says that if R is to choose values independent of
X's values, it can do no better than to perpetually choose the value
r*, Thus if P is to exceed P¥, R must take values which are correlated
with those of X; i.e., there must be transmission between X and R.
Single-occurrence regulation corresponds to the choice of RT = r¥
for all Tt , and if dynamic regulation is to improve on that, there
must be a channel linking X and R.

We must next construct a measure for the regulation imposed
by R. We denote the measure by’plf The simplest measure would be
P, = (P - P¥); however, this measure would not differentiate between
one regulator raising the probability of a favorable outcome from
0.8 to 1.0, and another raising it from 0.05 to 0.25. Intuitively
we feel that the latter has attained a more spectacular success,
and that P1 should be proportional to log—?;. As a compromise

between these contradictory demands, we define f1 as follows:

L1 = | P - p¥ log _§¥.
When P* = 0, that is when no values of R can lead to a favorable
outcome, the whole notion of regulation becomes absurd and A1 is un-

defined.,
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In the example above; R can guarantce the desired outcome,
that is, can make P = 1, by selecting its values according +o the

following mapping:

!

In this case, P =1, P¥ = 0,5, pl= C.5, and ™(X : R) = 1.5 bits.

x|123u
v |

R 1 2 3 1

With the above definition of’faﬁ it follows immediately from
theorem V.1 that T{(X : R) = 0 implies = C. Can Py end T{X : R) be
put in any other quantitative relation? We propose the following:

Conjecture:
Py S 2 . ™X : R).

The conjecture can be supported as follows. When cne tries 4o
construct an fz and a distribution gﬂX,R) for which the ratic
fal/T(X :R) (or fl/T) is as large as possible, it scon appears,
through trial and error, that the ratio is largest when bcth 1 and
T are very small., T is made small by making the columns of N{X,R)
nearly proportional. The mapping most favorable to regulation under

these conditions is apparently an fz of the fellowing form,

X

fz 1 2 3 s eo m"l m

1 1 o O 0 0

2 o 1 0O 0 0

3 c ¢ 1 0 0

R .
m-1 0O 0 © 1 c
m 0O 0 o 0 1 (%)
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gince in this case P* can be made small while P can be made considerably

larger with only a small T(X : R). The assignment N(X,R), with

1l 1

== 4¢(m - 1) if X = R; €K~=5

n’ LS
By R

1

5 - € if X #R

)

has the following characteristics:
(1) The columns are nearly proportional, suggesting a
minimal T(X : R).
(2) P* is as small as it can be with one 1 in each colum
of f,, and (P - P¥) is proportional to e.

With this f, and this N(X,R), p, is computed as follows:

P = m [124- (m-l)e] = ilfi + m(m-1)e
o'
pr= 1
m
L, m{m-1) e
1= mm-1)e log I
n

m(m - 1) € log [_l+ e (m - l)e]
For very small ¢,
L1~ m(m - 1) e[ma(m - l)e:l log e
= m3(m - 1)°€? log e.
The transmission is computed as follows.
T(X : R) = H(R) - Hy(R)
= log m + { (—i—- + (m-1)me ) log (-%;—- + (m-1)me)

+ (@-1) (& - me) log (- - me)}
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= logm - .og m [“*x]ﬁ" - {(m~l)me 4+ (m-1) (_131;_ - me)l
_.g:l.. [l + {m-1)n® e][(m-el)mee - 3(m-1 )emh’eeh -]

&

+ [ (m1) (1nfe )][ mPe -~ 3 e - ...] log e
= —%—-{%(m«»l)@e 2} 10g € 4+ oes
= Lm-1)o* ¢ log e.

The ratio /)l/T is

Pl = m3(m-1)2c? 10g e
T 5 (m=-1)m* e log e

= 2( 1),
m

Consequently, /Jl/T iz less than 2 for any m. If this distribution
is indeed the type that maximizes FJ/T’ as there is good reascn to
believe, then p) =< 2 T(X : R) always.

The transmission between X and R is thus seen to be an upper
bound for regulation when the goal is maximizing the probability of a
particular outcome or set of outcomes; if the goal is minimization
of a probability, the same sort of analysis holds, for to minimize
the probability that an event will cccur is of course the same as
to maximize the probability that it will not.

We will next consider regulation when the goal of R is to

preserve constancy.

5¢2+2. Regulation when the geal is to maintain constancy

In many situations involving regulation; the goal of the
regulator is to preserve a variable or variables at as nearly
a constant value as possible. The vast majority of the homeo-

static mechanisms occurring in plants and animals are of this
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type, of course; for example, the mechanisms maintaining temperature
and blood sugar levels in humans, or of moisture content in plants.
Many mechanical regulators, such as thermostats, automatic volume
controls, and automatic airplane pilots, are also of this type.

As has been pointed out by Ashbyég regulation in such cases
can frequently be viewed as blocking the transfer of information from
X to Z. X takes various actions which would show up as variations in
Z, were it not for appropriate counter-actions taken by R. If R is
completely successful; variations in Z are completely eliminated, with
the result that an observer of Z would obtain no information at all
about the values taken by X or R, The goal of R, maintainence of con-
stancy in Z, can thus also be seen as the suppression of entropy at
the output.

We can consequently define a new measure for regulation, P
based on how much output entropy is eliminated by R's actions. To
meaningfully compare the output entropy with R acting and R not acting
(R fixed at some value, in other words) it is necessary to assume, for
this section and most of the next, that X is passive and does not
change its actions according to how R behaves. We will consider; then,
situations in which the distributions for X are fixed, the process is
a continuing one (finite or infinite), and the outcome at time ~ is
determined by X and R at time <t ; f, s X x R —> Z. For example,

f, might be as follows:
X

3 3 5 1 3 (z)
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Suppose X takes its values independently and equiprobably; so
that P(x;) = 1/4, 1 =41 < 4. What will be the output entropy if R is
fixed at some particular value? If RT = 1 for all T, the outcomes
1,2, and 3 will occur in the frequency ratios 2 : 1 : 1, and the out-
put entropy will be

B(z) = - [2/h log 2/ + 1/4 log 1/% + 1/4 leg 1/1»] = 1.5 bits.
Similarly with R® = 2 for all © we cbtain H2(Z) = 2.0 bits, and
with R* = 3 for all <, we obtain H3(Z) = 1.5 bits. The regulator
can hold the output entropy to 1.5 bits by persistently taking values
1l or 3.

Now we ask, by how much further can R decrease the entropy
through appropriate actions? Clearly the output entropy, H(Z), can

be dropped to zero if R takes its values in accordance with this mapping:

If regulation is measured by this further decrease in entropy,
it comes to 1.5 bits. The regulator; by selecting values which are
appropriately matched with those of X, can succeed in maintaining the
output constant.

let us define the following:

H = H(Z)

H! = H(2Z) under the condition {R't =1r; for all "c} .

m .
H* = min { Ht }
i=1

r¥* = the numerically lowest r; in the set {ri | gt =H*} .

/J=H*-H.



P then, is a measure of the amount of ocutput entropy which

R suppresses by acting, beyond the amount which it could suppress by

perpetually taking the value r¥, We will proceed next to expand the

expression H¥ - H, to show the relation of p to ™R : X).

We wiil denote with a superscript * these quantities which

obtain when R is fixed permanently at r*¥. To get another expression
equivalent to H¥, we proceed as follows.

B = H*(Z)
= H*(X,2) - H*Z(x)

= B*(X) + H*X'(z) - B, (x)

Now H*(X) = H(X), since we have assumed that the distribution for X

is not dependent upon R's values. Also, H*X (2) = 0 since Z is a
determinate function of R and X. Consequently
H* = H(X) - X, (X).

To get an expression equivalent to H,

H(R,Z) - HZ(R)

™R : Z2) + HR(Z)

H

= MR :2) + B X) v B (2) - B (X).

Since Z) = 0, this simplifies to
X
3

H= T(R : Z) + HR(X) - HR’Z(X).

The difference between H¥ and H is P

= X) - H*ﬂ - : -
p o= (B -mo@]- (2R 2+ BE@ -B )]
= R :X)-TR : + X) - B* .

p o= TRX) PR 2) ¢ [H () - B, () ]

Iet us examine these terms in turn. T(R : X) is of course a measure
of the coordination between R ard X. It is bounded by H(R) and by

H(X), which are indicators of the "activity" of R and X. In fact if

186



187
R tekes values according to a mapping M3 X —> R, then

T(R : X) = H(R). The first term in the expression for (° » therefore,
indicates the statistical dependence of R on X.

The next term, T(R : Z), can be interpreted as the amount of
information one obtains about R by observing Z. Earlier it was
remarked that this quantity is small to the degree that R regulates
successfully; T(R : Z) is bounded by H(Z), the output entropy which
R tries to minimize.

The last two terms, Hhﬁz(x) and H*Z(X)y can best be interpreted
in terms of fz. If fz has the property that for any rys fz maps
X x Ty one-to-one into Z (that is, no Ty -Tow of fz has any repeated
entries), then H.R Z(X) = H;(X) = 0, since given R and Z there is no
uncertainty about’X. In this case,

L=T(R : X) - T(R : 2)
and clearly P s T(R : X) always. This inequality is closely related
to, but not identical with, Ashby's "Law of Requisite Variety".

Back to interpreting the last two terms, it should be clear
that HR,Z(X) and H*Z(X) are nonzero only when there are rows of f,
(where rows correspond to values of R) with repeated entries;, as in
the example on page 184 . Formally, let

k. = number of X-values in the set

& X \ fz(xJ, r;) = zp.k
i = R

K

ip

log k.

Then no row of fz has any z repeated more than k times, and
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consequently Ho Z(X) and H*Z(X) are both bounded by K. We will
J

occasionally refer to the ﬁumber k as the multiplicity of the mapping f,.
The contributipn to £ is the difference between HR,Z(X) and
H*Z(X) ; the difference is of course bounded by K, and it can be posi-
tive or negative. Whenever HR,Z(X) is positive, H*Z(X) is necessarily
positive, so the difference is in fact always lessAthan K, if K > O.
We collect these relationships in the following theorem:
Theorem V.2
p=TR :X) - 'j.'(R . 2) + [HR’Z(X) - H*'Z(X)]
/osT(R : X) +K
The amount of regulation which R can impose is limited by the trans-
mission between R and X, plus a quantity HR,Z(X) < K.
Theorem V.3
T(R : X) =0 => <0, regardless of K.
Proof :
We need only to show that T(R : X) = O implies HR,.Z(X) = H*Z(X).

Suppose T(R : X) = O.

HR’Z(X) = iz-—-l P(r,) Hz (x)

where superscript i is used to indicate quantities which are
defined under the condition { RT = r, for all ¥ } . The identity

B (x) + H;t (z) = B (2) + H;(X)

together with the fact that H;(Z) = 0 gives
H(X) = B (X) - B (2).
Since the distribution of X does not depend on R, H-(X) = H*(X).

Substituting in the first equation; we obtain
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m

) = T P [min) - we) ]
= ¢ (X) - ?E P{r;) Hi(z)
i1

On the right is a weighted sum of terms each at least as large
as H*(Z). Thus

HR’Z(X) < H*(X) - H*(2). »

The right side of this ineé;ual-ity is H*Z(x)g for

HE(X) = BY(X) + B4(2) - Be(2)
and BY(Z) = O. | | Q. E. D.

These last two theorems are cental to the understanding of
regulation. The first shows that there is a very definite bound
on regulation, this bound being the transmission between the regulator
and the regulated variable, plus an additional term which can be thought
of as indicating the congeniality of f, to regulaticn. The second
theorem says that regardless of the mapping, unless the regulator is
coordinated with the part it is trying to regulate it can do no better
than to perpetually take the value r*; taking any other values can
only degrade the regulation when T(R : X) = 0.

The situation is similar to that discussed earlier, where the
goal of R was to maximize a probability. In both casges the goal can
be partly attained by permanently taking a "best" value r*, and any
improvement over that can only take place if the regulatof is coor-
dinated with the variable it hopes to regulate. Morecover the improve-
ment is limited by the amount of that coordination.

These results can be generalized to include situations in

which the goal of the regulator is to cause, at the output, a



deterministic cycle of events, and to guard that cycle against
disturbances from X. The goal is to preserve constancy of a |
repetitive output, in other words - a heartbeat cycle, say, or the
wing-flapping cycle of a bird. Such situations may be encoded into
a form in which the goal is constancy, as before, but it is more
convenient to deal with them directly throwgh a generalization of
our previous results.

We will consider, therefore, supervariables X, R, and Z
and the mapping £, : X x R° —> 2%, and we will define quantities
analogous to those used earlier in this section. Whereas before we
used a superscript i to indicate quantities defimed under the
condition {Ift = ry for all '1 } » here we use superscript j to
indicate the condition {’ﬁ':(i-')j } , i.e., the value R takes is the
Jth member of the set of all possible values for R. (The members can
be numbered, because the set of values is countably infinite as shown
by the numbering scheme suggested below, when RT takes one of the

values 1, 2, or 3:

J (r);

0 1, 1, 1, 1; e
l 2’ l’ l, l’ LN N ]
2 3, 1, 1, 1, e
3 l, 2, l;\l, ese

and so on. In general,

o0

j = ‘z, (rk-l) (3k-l) where rk = pr, (r)..)
k=1 k4

150
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Now, in a manner strictly analogous to the development before,
we define
5 = 5(Z)
BY = 51(Z) under the conditicn { R = (;)j } .

* 3 -
HL min { HLJ } s Or g.1.b, %. ELJ } if there is no minimum.

Jjzl J=1

(r)* = the (;)J with smallest j, in the set { (;)j ! HLJ = Hl*'} .

p b= -
Some clarification may be helpful here. When we indicate that the
output information HL(Z) is positive, this is subject to two interpre-
tations. One is that even if we are given all preceeding values of Z
in the sequence { Zl, Z2y ..,,,Z? 5 eeey z" } we are nevertheless
not certain what will come next, even in the limit as n —» oo .
Another interpretation is that in a number of "experiments" each
yielding an infinite sequence {_Zlﬁ 223 soee } s our uncertainty
as to which sequence will occur in any particular experiment is infinite;
that is, we cannot even designate beforehand a finite set of such se-
quences into which the new sequence must fall. This second interpre-
tation should make it clear that the condition { R = (5)_3} implies
HL(ﬁ) = O; that is, the regulatcr is deterministic. A deterministic
regulator, undergoing deterministic behavior; can minimize the infor-
mation in the output sequence by an auspicicus choice of (F)j, The
degree to which the information is further reduced ty non-deterministic
behavior of the regulator is measured by /oL.

The reader should have little difficulty in seeing that cur

development of the expression for /o serves also to yield an expression
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for f>L; one has only to superscript all the expressions with L
throughout. The result is given in the following theorem:
Theorem V.4

pLl=th®: %) -1 : 2) + [ B 5 - i (%) ]

PUSTMR (D) 4 K
The amount of regulation which R can impose is limited by TL(§': X),
plus the quantity Hjﬁ’z(i’) < K. The situstion is exactly analogous
to that of theorem V.2. |

Similarly the proof of theorem V.3, with only minor changes
such as the substitution of P [(E)J ] for P(ry), etc., serves as
proof for the following: |
Theorem V.5

TL(R' :X)=0 = /JL < 0, regardless of K.
This completes our generalization. The point of this chapter is just
this: regulation, whether the goal is maximizimg or minimizing the
expectation of a particular set of outcomes, or is the suppression of
entropy, H(Z), or information, HL(Z), can be partly attained by the
choice of auspicious permanent values or determiitistic sequences - by
single-occurrence regulation, in other words. But to effect any
improvement over that, the regulator must coordimate his actions with
the system being regulated against, and the degree of that coordination

sets a bound on the regulation which can be achieved.

5+3. Important special cases of regulation

The last section indicated the importance of the quantities
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T(R : X) and TL(ﬁ': X) to regulaticn. Few consirzints vere placed on
the general formulation, and in particular nothing was mentioned about
which variasbles acted as input to the regulator R. In this secticn we
will briefly examine some common regulatory situaticns in the light of

the previous results.

5+3.1. Error-controlled feedback regulation

It is very common in texts on servomechanisms to see a diagram
of the sort shown in Figure 38; X(s) is tke "commsnd" or reference
input, E(s) is the "error" signal, and ¥{s) is the "controlled output"
signal. The servomechanism is generally considered successful if the
error signal is kept within prescribed limits, or its root-mean-gquare
value is lower than a given number, or some other criterion is satisfied.

From our point of view, the goal of the regulat:ury mechanism is
to keep the error signal as nearly constant as possible. Preserving
the topology but changing the names of the variables, we can redraw
the diagram in our terms as shown in Figure 39. The mapping fz corre-
sponding to the subtraction device in the servomechanism has multiplicity
one, i.e., Hk’Z(X) = 0. Consequently, from theorems V.2 and V.h,

P = T(R : X)

p° = TR : D).

This configuration has the interesting property that R receives
informetion about X only through Z;, and at the same time R is trying
to suppress entropy at Z. The regulator thus appears to be cutting off

its own source of information and lowering its own efficiency. Clearly

it cannot be fully successful at eliminating H{Z), for if H(Z) were zero,
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HL(Z) would be zero and so also would Hl(ﬁ)g by theorem IV.12, If
HL(i) were positive we would have a contradiction, because the subtrac-
tion device, if one of the two inpute is known, is not an informa*ion -
losing mechanism. From this we conclude that regulation can never be
fully successful in an "errcr-controlled" regulator, except in the de-
generate case of a deterministic input.

What is perhaps more surprising is that f:L is necessarily zero!
The "error" sequence must contain exactly as much informaticn as the
input sequence, regardless of the activity of R. To see this, we note
that given a long sequence of Z; omne can deduce the corresponding se-
quence of R (R, being passive, cannct generate information). And since
f, has mﬁltiplicity one, knowing R and Z is sufficient to deduce X.
Consequently from Z one can reconstruct X; the reverse is also true;, so
HU(X) = E¥(Z). It is for this reason that we hedged sbove in saying
that R appears to be cutting off its own source of information; in fact,
it doesn't. The regulator is a mere recoder, preserving the information
but transforming it to a form with possibly lower entropy. The regu-
lation P is the difference between the input entrory and the error
entropy,

P = B* (2) - H(z)

= H(X) - H{Z)

since H*(Z) = H(X) whenever the multiplicity of f, is cne.

If there are no memory-constraints in the input sequence, i.e.,
if HL(i) = H(X), then the regulator's task is completely hcpeless, since
such a sequence cannot be converted to a form with lcwer emtropy without

losing information. Consequently P= Q..
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This observation can be generalized further: if HL(i)-= H(X) -1,
so that the input sequence has a memory-type constraint of M bits per
step, then /o cannot exceed M, and consequently

H(X) - M < H(Z) < H(X).
To show this we need only note that HL('z‘) = HL(}?) = H(X) - M bits per
step; the entropy H(Z) is minimized by encoding the information into a
form with no memory constraints, i.e., a form with H(Z) = BL(Z), since
H(Z) < HL(Z) is impossible. Therefore

H(z) zH(X) - M
and P = EQX) -[HX) - M] =n

The regulation is limited by the amount of ['per-step] sequen-
tial constraint in the input sequence.

It might appear that f’ is limited by the channel capacity of R,
and that if the regulator is to achieve the maximum regulation of M
bits per step, it must have a channel capacity of M bits per step, or
more. This is not necessarily so. If the input is deterministic, for
example, then M = [ H(X) - HL()-(-)] = H(X), and R can achieve ’regulation
f>= M by following a deterministic sequence absolutely identical to
that of X. R can be a perfect regulator, that is, and can keep the
error sequence absolutely constant, even with a channel capacity of zero.

However it is true that P is limited by the entfopy of R, since
P = T(R : X) < H(R), and therefore if R is to regulate it must take
more than one value. We might say that regulation is limited b& the
"variety" capacity of R.

To summarize: from the point of view of information theory, an

error-controlled feedback regulator cannot reduce the information in the
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error sequence; it can cnly take advantage of sequential constraints in
the input to reduce the entrcpy of the error sequence. If there are no
such constraints, regulation is impossible.

We are led to suppose; therefore, that the great variety of
applications in which error-controlled feedback regulators prove useful
all have one thing in common: the input sequences have seqpéntial con-

straints, and probably very strong constraints.

5+3.2. Feed-forward regulation

In the error-contrclled regulator, R got its information about X
by way of Z. 1In the configuration we will discuss next, R gets this
information directly from X. This configuration, which we will call
feed-forward regulation, is represented in Figure L0, This is the type
of regulation which occurs when one starts o fall but catches himself,
or when an army which has obtained access to the enemy's battle plan
takes appropriate countermoves, or when an automobile driver activates
his own brakes whenever he notices the car ahead braking.

In most practical applications, there is a delay between the time
the regulator obtains informaticn about X and the time it acts on that
information. We will take this inte account by assuming that X does not
have an immediate effect on R but does have an effect on R one time unit
later, i.e., that R' depends on Xlg XZ, voey it_l but not on ito We will

1 -1

assume that R® is in fact determined by X, Xeg eoog X o

The constraint between X and its predecessors in the X-sequence
- T —
is T(<Xl, x29 coosp x> x ); in the limit it is [H(X) - HL((X)]=M.
By the Collapsing Theorem for Transmission,

T-1 T
(R : XT)sT(<Xl, X2, ceoy X > 1 X )
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Figure 40.
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since R’t is a function of the earliler X's, Thus we have

™R : X) <M
and consequently psM + K, where 2K is the multiplicity of the
mapping f,.

The assumed time delay thus leads tc the conclusion that f’
can only be positive when there is memcry constraint in the input se-
quence, and P is limited by that constraimt in the same way it was
limited in the error-controlled feedback regulator (except for the add-
itive term K; which in the feedback case we assumed was zero). This is
only ccmmon sense, of course; if R is to regulate on the basis of the
past history of X, there must be some corcelatiocm betweern that past and
the present value which R is trying to counteract.

If fz has multiplicity cne, then just as in the case of the feed-
back regulator R cannot reduce H{Z) to zero except in the degenerate
case of a deterministic X. And just as in that case, and for the same
reasons, the channel capacity of R is not necessarily a bound for P

If £, has multiplicity one, then surprisingly enough /,L is
necessarily zerc, just as for the feedback regulator. That is,

BYX) = HY(Z)
and no action on R's part can reduce the informaticn at Z. To see this s
suppose that one has been given the values for Xl 5 X2 5 eeoy X’t -1 s and by
observing ZT he wants to deduce XT. This is always possiktle, since if

Xl’ 0.., XT-l

are given, R’c can be calculated, and when 2% and R° are
known, there is no uncertainty about XT (when f, has multiplicity one).
Consequently if one is given some early values of X and then an indefi-

nitely long sequence of Z-values, one can deduce all the corresponding



200
X-values. The same is true if the roles of X and Z are interchanged,
so the X-sequence and Z-sequence must carry the same amount of infor-
mation, regardless of R.

The similarities between regulation in the feedback and feed-
forward cases are striking; in fact there is no substantial point on
which they differ. Neither is able to block information, HL(Z), at all
when f, is of multiplicity one. /: in each case is limited by sequential
constraints in i; and the regulators in both cases succeed, if they
succeed at all, only by making use of those constraints. Neither type
is capable of "perfect" regulation, that is, maintainence of absolute
constancy at Z, except in degenerate cases.

The close relationship between the two is apparent also in the
difficulty of deciding whether to classify a given example of regulation
as feed-back or feed-forward. When one is following the motions of a
tennis ball with his eyes, for example, are eye-movements guided by
information about the position of the ball, or by information about
the angular error? It would be difficult to say.

When the quality of regulation achievable by feedback or feed-
forward regulation is not sufficient, another type which we shall call

"parallel" regulation is often used.

5+3+3.. Parallel regulation

In parellel regulation the regulator does not wait for X to
affect Z before starting to operate; it makes use of information from
the same source that affects X, as represented in Figure 41, The box D

represents a primary source of disturbances which affect X and R.
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This is the type of regulation in which R is frequently thought
of as "anticipating" X, so that the regulatory action is simultaneous
with the action of X. A driver sees a child run into the street and
applies his brakes at the same time as the car ahead; a homeowner hears
of an imminent cold wave and starts up his furnace; a schoolteacher
smells fire and leads her students out of the building. As Ashby has
pointed out, many of our senses have been developed precisely to get
advance warning of disturﬁances, so that regulatory steps can be taken
before the outcome can be affected.

The job of the regulator, in fact, is to coordinate his actions
with those of X in such a way that the outcome is not affected, no matter
what disturbances arise, or in other words to match X in such a way that
the channel capacity from D to Z is zero. In contrast to the other
situations we have studied, this is possible with parallel regulation;
H(Z) can sometimes be made equal to zero.

Much depends on f,, of course. In the worst possible case, f,
maps X X R one-to-one into Z and all regulation is clearly impossible;

R can do no better than to pick some value ry and keep that value always.
If on the other hand there is a value Zy and a mapping /u.: X > R

such that fz(xi, /L(xi)) = z for all x; € X, then perfect regulation

is possible, for whatever value X takes; R need only take the value /M(X)
to keep the output fixed at Zy o In this case R can attain perfect reg-
ulation by acting in a manner isomorphic with X, for as was pointed out
earlier, if X and R are isomorphic machines subject to the same input,
they behave isomorphically and T(X : R) = H(X) = H(R).

To summarize: if for every value Xy there is a corresponding
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value r, =/¢(xi) such that f,(x,, ry) is the same for all i, then R
can attain perfect regulation { H(Z) = 0) by being isomsrphic with X
and subject to the same input.

If £, is of multiplicity cne, then /pL is limited by the channel
capacity of R, and in any case, since TL(E'z X) < Hlfﬁ)y

/91‘ < (channel capacity of R) + K.
Thus in parallel regulation, the channel capacity of the regulater is
a fundamental limit on its ability to reduce the output information
rate, a fact which is a pleasant complement to the fact that the capacity
also limits its ability to increase that rate.

This fact, that parallel regulation /oL is limited by the channel
capacity of the regulator, is a fundamental link between information
and control; it means that unless the situation is especially fortuitous
(i.e., £, is especially favorable to regulation so that [thz(x) - H;CXH
is positive), any attempt at regulation can only succeed to the degree
that the regulator has access to sufficient information, "knows how" to
transform it into appropriate action, and is able to carry out that
action. The channel capacity, and thus the regulation; is limited by

the weakest link in that chain.

S.4. Further remarks

The major restriction on the quéntitative results in this chapter
is that they were derived under the assumption that X was not affected
by R; yet much of real-world regulation fits that assumption. Regulation
in complex systems is frequently in one of the three forms we have dis-
cussed, often with X and R being complex systems and Z being a vector

with components; the theorems developed above hcld just as well in that
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case as when X, R, and Z are all very simple. Of course it requires
little imagination to concoct regulatory schemes which appear to be
more complex than any of the three basic forms, but further inspection
often shows that a scheme apparently more complex may be recoded into
one of the basic three or a simple combiration of them.

Our purpose in this chapter, however, has been not to analyze
all common schemes but rather to indicate some of the primary relations
between information and regulation, to quantify these relations as
much as is feasible in a general discussion, and to illustrate these
relations by the three important examples. This, we hope; is a good

start toward a better understanding of regulation.
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